Abstract:
A device for operating gas in the vacuum or low-pressure environment and for observation of the operation includes a housing. The housing has a thinner part formed at a side thereof, and at least one spacer mounted therein for partitioning off its inside into a gas chamber and at least one buffer chamber outside the gas chamber. The gas chamber has two inner apertures provided on the spacers above and below the gas chamber. The housing has two outer apertures provided respectively on a top side thereof and a bottom side thereof. All of the inner and outer apertures are coaxial with one another and located on the thinner part. The housing has a pumping port for communication with the buffer chamber, and a gas inlet for communication with the gas chamber.
Abstract:
The present invention relates to a cryo-charging specimen holder for the electron microscope, particularly to a cryo-charging specimen holder for the electron microscope to hold various biological materials. The major feature of the invention is to charge the biological specimen and freeze the specimen at low temperature. The ice around the biological sample is also doped, so that after charging the doped ice surrounding the sample has a conductivity level comparable to that of conductor. Therefore, the sample can be embedded by the doped and charged ice obtaining the property of conductor, in order to be observed by the electron microscope.
Abstract:
A device for operating gas in the vacuum or low-pressure environment and for observation of the operation includes a housing. The housing has a thinner part formed at a side thereof, and at least one spacer mounted therein for partitioning off its inside into a gas chamber and at least one buffer chamber outside the gas chamber. The gas chamber has two inner apertures provided on the spacers above and below the gas chamber. The housing has two outer apertures provided respectively on a top side thereof and a bottom side thereof. All of the inner and outer apertures are coaxial with one another and located on the thinner part. The housing has a pumping port for communication with the buffer chamber, and a gas inlet for communication with the gas chamber.
Abstract:
A method of operating liquid in a vacuum or low-pressure environment and observing the operation and a device for the operation and the observation respectively, including the steps of preparing a housing, putting the housing in the vacuum or low-pressure environment and control liquid, vapor, and buffer chambers under the same temperature, infusing vapor into the vapor chamber through a gas inlet and control the vapor pressure inside the vapor chamber to be equal to the saturated vapor pressure of a liquid specimen inside the liquid chamber under the same temperature to prevent the inside liquid from volatilization, and evacuating the buffer chamber through the pumping port to pump out the vapor and prevent the vapor from exhausting through outer apertures out of the housing. A probing source can pass through the outer, inner, and vapor apertures for observation and analysis of the liquid specimen inside the liquid chamber.
Abstract:
An observational liquid/gas environment combined with a specimen chamber and two pole pieces of an electron microscope includes at least two buffer chambers, a plurality of spacers, and a gas source. The buffer chambers are formed by the spacers and the two pole pieces, located at an upper side and a lower side of the specimen chamber respectively. The spacers have inner and outer apertures abutting the buffer chambers. All of the inner and outer apertures are coaxially aligned with one another, crossing a path that the electron beam of the electron microscope passes. The buffer chambers are connected with a gas-pumping source. The gas source is connected with the specimen chamber. The distance between the at least two inner apertures is smaller than that of the two pole pieces. The spacers having the inner apertures are located in the specimen chamber or the electron beam through tunnels.
Abstract:
A device for operating gas in the vacuum or low-pressure environment and for observation of the operation includes a housing. The housing has a thinner part formed at a side thereof, and at least one spacer mounted therein for partitioning off its inside into a gas chamber and at least one buffer chamber outside the gas chamber. The gas chamber has two inner apertures provided on the spacers above and below the gas chamber. The housing has two outer apertures provided respectively on a top side thereof and a bottom side thereof. All of the inner and outer apertures are coaxial with one another and located on the thinner part. The housing has a pumping port for communication with the buffer chamber, and a gas inlet for communication with the gas chamber.
Abstract:
An ultra-thin liquid control plate and a combination of a box-like member and the control plate include a plate-like member having at least one view hole. The joint surface combined with a sidewall of the view hole and a surface of the plate-like member is provided with at least one more-hydrophilic section and at least one less-hydrophilic section, wherein the more-hydrophilic section has a height smaller than 50 μm. While combined with the box-like member, the plate-like member is mounted in the box-like member. The box-like member has at least one through hole running through each of a top side and a bottom side thereof and coaxially aligned with the view hole. After a liquid is placed into the view hole, the more-hydrophilic section adsorbs the liquid to form a liquid layer and the less-hydrophilic section is hydrophobic to adsorb no liquid.
Abstract:
A closed observational device for an electron microscope is formed of a housing. The housing includes a liquid chamber formed therein, at least one view hole formed at each of a top side thereof and a bottom side thereof and communicating with the liquid chamber and coaxially aligned with the other, and a film mounted to and sealing each of the view holes. Accordingly, a general specimen or a live cell can be placed into the liquid chamber for microscopic observation under the electron microscope. Besides, the present invention can enclose the liquid inside the housing to prevent the liquid from exhausting outward or volatilization.
Abstract:
An ultra-thin liquid control plate and a combination of a box-like member and the control plat include a plate-like member having at least one view hole. The joint surface combined with a sidewall of the view hole and a surface of the plate-like member is provided with at least one more-hydrophilic section and at least one less-hydrophilic section, wherein the more-hydrophilic section has a height smaller than 50 μm. While combined with the box-like member, the plate-like member is mounted in the box-like member. The box-like member has at least one through hole running through each of a top side and a bottom side thereof and coaxially aligned with the view hole. After a liquid is placed into the view hole, the more-hydrophilic section adsorbs the liquid to form a liquid layer and the less-hydrophilic section is hydrophobic to adsorb no liquid.
Abstract:
A method of operating liquid in a vacuum or low-pressure environment and observing the operation and a device for the operation and the observation respectively, including the steps of preparing a housing, putting the housing in the vacuum or low-pressure environment and control liquid, vapor, and buffer chambers under the same temperature, infusing vapor into the vapor chamber through a gas inlet and control the vapor pressure inside the vapor chamber to be equal to the saturated vapor pressure of a liquid specimen inside the liquid chamber under the same temperature to prevent the inside liquid from volatilization, and evacuating the buffer chamber through the pumping port to pump out the vapor and prevent the vapor from exhausting through outer apertures out of the housing. A probing source can pass through the outer, inner, and vapor apertures for observation and analysis of the liquid specimen inside the liquid chamber.