Abstract:
Inexpensive product consisting of porous carbon, with a pore structure which is suitable for retaining electrode parts which can be used in particular for a use as an electrode material for a lithium-sulphur secondary battery, and a method comprising the following method steps: (a) providing a template consisting of inorganic material which contains spherical nanoparticles and pores, (b) infiltrating the pores of the template with a precursor for carbon of a first variety, (c) carbonizing so as to form an inner layer on the nanoparticles with a first microporosity, (d) infiltrating the remaining pores of the template with a precursor substance for carbon of a second variety, (e) carbonizing the precursor substance, wherein an outer layer with a second microporosity which is lower than the first microporosity is produced on the inner layer, and (f) removing the template so as to form the carbon product with layer composite structure, comprising an inner layer consisting carbon with a first, relatively high microporosity, which has a free surface facing a cavity, and an outer layer consisting of carbon with a second, relatively low microporosity, which has a free surface facing away from the cavity.
Abstract:
Build-up granulation and compaction granulation methods are generally known for producing granules from porous inorganic material. In order to allow a cost-efficient yet also reproducible production of porous granules having a more pronounced hierarchical pore structure, the invention relates to a method comprising the following steps: (a) supplying a feedstock flow to a reaction zone in which the feedstock is converted to material particles by means of pyrolysis or hydrolysis, (b) depositing the material particles on a deposition surface (1a) forming a soot layer (5), (c) thermally hardening the soot layer (5) to form a porous soot plate (5a), and (d) comminuting the soot plate (5a) to form porous granules (13).
Abstract:
For use as electrode material for a lithium battery, porous templates are impregnated with a carbon feedstock that can be graphitized. This frequently results in only a low thickness of the deposited, graphite-like layer, such that generally several such infiltration and carbonation processes must be carried out consecutively. In order to provide a cost-effective product which is made of porous carbon and has high porosity and a low surface, according to the invention a method comprises the following method steps: (a) preparing a porous carbon structure having a large specific surface, (b) infiltrating the carbon structure with a precursor substance for carbon that can be graphitized, (c) carbonizing the precursor substance to form the carbon product having a low specific surface, wherein preparing the carbon structure according to method step (a) comprises the following: (I) preparing a template containing pores, (II) infiltrating the pores of the template with a solution that contains a precursor of carbon that cannot be graphitized, (III) carbonizing the precursor forming the carbon structure having the first specific surface, and (IV) removing the template.
Abstract:
A method allows analyzing and describing the reflective properties of a three-dimensionally structured original surface. The topology of the original surface is determined and the topological data are stored in the form of a depth map in a first data record and evaluated with respect to the influence of the data on the reflective properties. Each surface element is assigned a reflective value in accordance with the evaluation and the value is stored in a second data record and made available to other machining or inspection systems. There, the reflection values of the second data record are divided into classes and the depth values of the first data record, assigned to the classified reflection values, are varied in accordance with the classification. Finally, the changed depth values are employed as parameters for electronically controlling a tool in order to machine the artificially produced surface.
Abstract:
A closed single-use system for mixing, storing and homogenizing liquids, comprising an assembly constituted by a rigid container (1) fitted with a non-invasive pump (4), the container (1) enclosing a generally parallelepipedic single-use bag (2), the lower face and the upper face of which are connected in fixed manner by means of a mixing duct (3) which is inserted into the pump (4) and which, during operation, allows the closed-circuit circulation of the liquid in said bag (2), for example from the bottom of the bag to its top, the pump (4) being open so that the mixing duct (3) can be inserted into it and removed from it.
Abstract:
The invention relates to a roll mill having a grinding plate and at least one grinding roll rolling on the grinding plate, wherein material which is to be comminuted, after being subjected to loading in a gap formed between the grinding plate and grinding roll, is directed away over the periphery of the grinding plate and, furthermore, a stationary accumulating edge, which does not rotate along with the grinding plate, is provided, at least on that side of the grinding roll which is directed towards the periphery of the grinding plate, this accumulating edge forming at least part of an elevation of the periphery of the grinding plate. The elevation of the periphery of the grinding plate here is higher in the region of the grinding rolls than in the region between the grinding rolls, in order to prevent the material which is to be comminuted from escaping radially from the gap formed between the grinding plate and grinding roll.
Abstract:
The present invention relates to a measuring device and a method for contactless detection of an angle of rotation or a torsional rotation. The measuring device includes a first resonator (2) and a second resonator (4). The two resonators (2, 4) have an essentially circular circumference, on which at least one protrusion and/or one recess is disposed. The two resonators (2, 4) are coplanar to one another and are also rotatable relative to one another. In addition, an exciter device (6) for exciting the resonators and a receiver device (6) for measuring a backscattered signal are present. Upon a relative rotation of the two resonators (2, 4) to one another, the resonant frequency changes, which is used as a measure for ascertaining the angle of rotation.
Abstract:
In order to provide an inexpensive product composed of a porous carbon provided with electrochemical active material, said product being suitable particularly for use as a cathode or anode material for a secondary battery, a process comprising the following process steps is proposed: (a) producing a template from inorganic material by gas phase deposition, said template comprising a framework of pores and nanoparticles joined to one another, (b) coating the template framework with an electrochemical active material or a precursor thereof, (c) infiltrating the pores of the template with a precursor substance for carbon, (d) carbonizing the precursor substance to form a carbon layer, (f) removing the template.
Abstract:
In a known process for drawing a quartz glass strand, SiO2 particles are fed to a melting crucible and softened therein to form a quartz glass mass, and the softened quartz glass mass is pulled vertically downward as a quartz glass strand via a drawing nozzle which is provided in the bottom region of the melting crucible and has a gap-like drawing nozzle opening. In order, on the basis thereof, to make it easier to reproducibly produce a quartz glass strand with a minor deviation from the nominal wall thickness profile, and in particular to avoid irregularly occurring indentations and protrusions of the wall thickness profile, it is proposed according to the invention that the wall thickness profile of the quartz glass strand is detected, and that the drawing nozzle is heated by means of a plurality of heating elements which are distributed around the drawing nozzle opening and can be electrically actuated independently of one another, and that the quartz glass mass is locally heated by means of the heating elements within the gap-like drawing nozzle opening depending on measurement results of the wall thickness profile.
Abstract:
The invention relates to an optical filter material made of doped quartz glass, which at a low dopant concentration exhibits spectral transmission as high as possible of at least 80% cm−1 for operating radiation of 254 nm, transmission as low as possible in the wave range below approximately 250 nm, and an edge wavelength λc within the wave range of 230 to 250 nm. It was found that this aim is achieved by doping comprising a gallium compound, which in the wave range below 250 nm has a maximum of an absorption band and thus determines the edge wave range λc.