Abstract:
A method of making a device includes forming a first hard mask layer over an underlying layer, forming first features over the first hard mask layer, forming a first spacer layer over the first features, etching the first spacer layer to form a first spacer pattern and to expose top of the first features, removing the first features, patterning the first hard mask using the first spacer pattern as a mask to form first hard mask features, removing the first spacer pattern. The method also includes forming second features over the first hard mask features, forming a second spacer layer over the second features, etching the second spacer layer to form a second spacer pattern and to expose top of the second features, removing the second features, etching the first hard mask features using the second spacer pattern as a mask to form second hard mask features, and etching at least part of the underlying layer using the second hard mask features as a mask.
Abstract:
A photomask for exposure of a semiconductor wafer using dipole illumination and method of manufacturing the same is disclosed. A method of forming a pattern on a semiconductor using the photomask is also disclosed. The photomask may have an array of islands that are used for printing lines using dipole illumination. The photomask may have sub-resolution assist features (SRAF) to assist in printing the lines. The SRAF may include an array of holes.
Abstract:
Methods and apparatus for providing lighting in a display are provided. In one embodiment, a microelectromechanical system (MEMS) is provided that includes a transparent substrate and a plurality of interferometric modulators. The interferometric modulators include an optical stack coupled to the transparent substrate, a reflective layer over the optical stack, and one or more posts to support the reflective layer and to provide a path for light from a backlight for lighting the display.
Abstract:
Bit line connections for non-volatile storage devices and methods for fabricating the same are disclosed. At least two different types of bit line connections may be used between memory cells and bit lines. The different types of bit line connections may be structurally different from each other as follows. One type of bit line connection may include a metal pad between an upper via and lower via. Another type of bit line connection may include an upper via and lower via, but does not include the metal pad. Three rows of bit line connections may be used to relax the pitch. For example, two rows of bit line connections on the outside may have the metal pad, whereas bit line connections in the middle row do not have the metal pad.
Abstract:
Methods for forming patterns having triple the line frequency of a first pattern using only a single spacer are disclosed. For example, the first pattern is formed in a first and a second material using a lithographic process. Sidewall spacers are formed from a third material adjacent to exposed sidewalls of features in the second material. The width of the features in the first pattern in the first material is reduced. For example, the width is reduced to about the target width of features in a final pattern. The width of features in the first pattern in the second material is reduced using remaining portions of the first material as a mask. A second pattern is formed based on remaining portions of the second material and the sidewall spacers. The features in the second pattern may be lines having about ⅓ the width of lines in the first pattern.
Abstract:
Embodiments of MEMS devices include support structures having substantially vertical sidewalls. Certain support structures are formed through deposition of self-planarizing materials or via a plating process. Other support structures are formed via a spacer etch. Other MEMS devices include support structures at least partially underlying a movable layer, where the portions of the support structures underlying the movable layer include a convex sidewall. In further embodiments, a portion of the support structure extends through an aperture in the movable layer and over at least a portion of the movable layer.
Abstract:
Certain MEMS devices include layers patterned to have tapered edges. One method for forming layers having tapered edges includes the use of an etch leading layer. Another method for forming layers having tapered edges includes the deposition of a layer in which the upper portion is etchable at a faster rate than the lower portion. Another method for forming layers having tapered edges includes the use of multiple iterative etches. Another method for forming layers having tapered edges includes the use of a liftoff mask layer having an aperture including a negative angle, such that a layer can be deposited over the liftoff mask layer and the mask layer removed, leaving a structure having tapered edges.
Abstract:
Methods and apparatus for providing light in an interferometric modulator device are provided. In one embodiment, a microelectromechanical system (MEMS) is provided that includes a transparent substrate and a plurality of interferometric modulators. The interferometric modulators include an optical stack coupled to the transparent substrate, a reflective layer over the optical stack, and one or more posts to support the reflective and to provide a path for light from a backlight for lighting the interferometric modulators.
Abstract:
A method is disclosed for fabricating a read sensor for a magnetic head for a hard disk drive having a read sensor stack and two lateral stacks. The method of fabrication includes forming lateral stacks on a gap layer, surrounding a groove to form a template. The read sensor stack is then formed in the groove, which defines the lateral dimensions of the read sensor stack, and lead layers are then formed on the lateral stacks. Also disclosed is a read head for a disk drive having a sensor stack defined by pre-established lateral stacks, and a disk drive having the read head.
Abstract:
A method is invented for processing a thin-film head/semiconductor wafer. A layer of polymer is applied onto a wafer. A layer of dielectric material is added above the polymer layer. A layer of photoresist is added above the dielectric layer. The photoresist layer is patterned using a photolithography process. Exposed portions of the dielectric layer are removed. Exposed portions of the polymer layer are removed. Exposed portions of the wafer are removed. The polymer layer and any material thereabove is removed after hard bias/leads deposition.