Abstract:
The subject technology provides a method and apparatus for performing dual track routing. A pair of signal traces is routed in between two rows of contacts and at least one of the signal traces is modified to satisfy a routing restriction. The modification of the signal trace includes three trace segments that deviate the signal trace away from the source of the routing restriction.
Abstract:
A method and apparatus for matching the lengths of traces of differential signal pairs. The method includes determining that a first trace is longer than a second trace and modifying the second trace so that the length is substantially equal to the length of the first trace. In some implementations, the second trace can be modified by replacing one or more sections of the trace with two line segments that are substantially equal in length and meet at a vertex that is less than 180 degrees.
Abstract:
A method and apparatus for matching the lengths of traces of differential signal pairs. The method includes determining that a first trace is longer than a second trace and modifying the second trace so that the length is substantially equal to the length of the first trace. In some implementations, the second trace can be modified by replacing one or more sections of the trace with two line segments that are substantially equal in length and meet at a vertex that is less than 180 degrees.
Abstract:
Embodiments relate generally to network system and apparatus for heat management of high volume network devices. More specifically, disclosed are system and apparatus that provide for improving heat dissipation of the network devices through improved air circulations, including a PCB with at least one slot and a connector cage mounted on the printed circuit board, the connector cage being within a certain distance from the at least one slot in the PCB.
Abstract:
A rack mounting kit is configured to allow mounting of a telecommunications equipment chassis into a rack by a single person. The rack mounting kit includes two complimentary brackets that form a shelf-like feature. The complimentary brackets also include a mating latch for interfacing with a chassis to secure the chassis in place. Additionally, a cross brace is provided that is removably installed onto the two complimentary brackets to provide additionally rigidity to a rack while a chassis is being installed. The cross brace can be removed once installation of the chassis is complete.
Abstract:
The subject technology provides a method and apparatus for performing dual track routing. A pair of signal traces is routed in between two rows of contacts and at least one of the signal traces is modified to satisfy a routing restriction. The modification of the signal trace includes three trace segments that deviate the signal trace away from the source of the routing restriction.
Abstract:
The subject technology provides a method and apparatus for performing dual track routing. A pair of signal traces is routed in between two rows of contacts and at least one of the signal traces is modified to satisfy a routing restriction. The modification of the signal trace includes three trace segments that deviate the signal trace away from the source of the routing restriction.
Abstract:
The subject technology provides configurations for a printed circuit board that includes a first reference plane, a first signal layer below the first reference plane, a second signal layer below the first signal layer, a second reference plane below the second signal layer, a first differential pair on the first signal layer, and a second differential pair on the second signal layer, each of the first and second differential pairs comprising, respectively, a first pair and a second pair of conductive traces formed on a dielectric material of the PCB, the first pair of conductive traces being arranged on the dielectric material to interleave with the second pair of conductive traces.
Abstract:
A method and apparatus for matching the lengths of traces of differential signal pairs. The method includes determining that a first trace is longer than a second trace and modifying the second trace so that the length is substantially equal to the length of the first trace. In some implementations, the second trace can be modified by replacing one or more sections of the trace with two line segments that are substantially equal in length and meet at a vertex that is less than 180 degrees.
Abstract:
A method and apparatus for matching the lengths of traces of differential signal pairs. The method includes determining that a first trace is longer than a second trace and modifying the second trace so that the length is substantially equal to the length of the first trace. In some implementations, the second trace can be modified by replacing one or more sections of the trace with two line segments that are substantially equal in length and meet at a vertex that is less than 180 degrees.