Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A low latency query engine for APACHE HADOOP™ that provides real-time or near real-time, ad hoc query capability, while completing batch-processing of MapReduce. In one embodiment, the low latency query engine comprises a daemon that is installed on data nodes in a HADOOP™ cluster for handling query requests and all internal requests related to query execution. In a further embodiment, the low latency query engine comprises a daemon for providing name service and metadata distribution. The low latency query engine receives a query request via client, turns the request into collections of plan fragments and coordinates parallel and optimized execution of the plan fragments on remote daemons to generate results at a much faster speed than existing batch-oriented processing frameworks.
Abstract:
A low latency query engine for APACHE HADOOP™ that provides real-time or near real-time, ad hoc query capability, while completing batch-processing of MapReduce. In one embodiment, the low latency query engine comprises a daemon that is installed on data nodes in a HADOOP™ cluster for handling query requests and all internal requests related to query execution. In a further embodiment, the low latency query engine comprises a daemon for providing name service and metadata distribution. The low latency query engine receives a query request via client, turns the request into collections of plan fragments and coordinates parallel and optimized execution of the plan fragments on remote daemons to generate results at a much faster speed than existing batch-oriented processing frameworks.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.
Abstract:
A format conversion engine for Apache Hadoop that converts data from its original format to a database-like format at certain time points for use by a low latency (LL) query engine. The format conversion engine comprises a daemon that is installed on each data node in a Hadoop cluster. The daemon comprises a scheduler and a converter. The scheduler determines when to perform the format conversion and notifies the converter when the time comes. The converter converts data on the data node from its original format to a database-like format for use by the low latency (LL) query engine.