Abstract:
A carbon dioxide sensor comprising a first beam that includes a functionalized surface and a second beam that includes a functionalized surface such that reduced-drift differential sensing of carbon dioxide may be performed by monitoring changes in the resonant frequency of the first beam relative to the resonant frequency of second beam.
Abstract:
Improved SAW pressure sensors and manufacturing methods thereof. A SAW wafer including a number of SAW transducers disposed thereon may be provided. A cover wafer may also be provided, with a glass wall situated between the cover wafer and the SAW wafer. The cover wafer may be secured to the SAW wafer such that the glass wall surrounds the SAW transducers. In some instances, the glass wall may define, at least in part, a separation between the cover wafer and the SAW wafer. One or more contours may also be provided between the cover wafer and the SAW wafer such that at least one of the contours surrounds at least one of the SAW transducers when the cover wafer is disposed over and secured relative to the SAW wafer.
Abstract:
Solar cells and solar cell assemblies that may be tuned for greater sensitivity to particular ranges of energy within the electromagnetic spectrum. In some instances, a solar cell may include a tunable electron conductor that permits greater choices in quantum dots, thereby providing solar cells that can be constructed to utilize a larger fraction of the solar spectrum. In some cases, the electron conductor may include group III nitride-based materials. A solar cell assembly is also disclosed that may include a first quantum dot solar cell and a second quantum dot solar cell. The first and second quantum dot solar cells may be tuned for differing portions of the electromagnetic spectrum.
Abstract:
The design and synthesis of a matrix nanocomposite containing amino carbon nanotubes used as a functionalized sensing layer for carbon dioxide detection by means acoustic wave sensing devices, e.g., SAW/BAW devices. These sensing materials contain a type of amino carbon nanotubes (single walled or multi-walled) and a polymer (or other compounds) which are sensitive to carbon dioxide in the acoustic wave sensing device based gas sensors. The sensitivity of the matrix consisting of the amino carbon nanotubes and a polymer (or other compounds) is ensured by the presence of amino groups which can react at room temperature with CO2 in a reversible process to form carbamates.
Abstract:
Methods can be adapted for design of a sensitive monolayer for detection of hydrogen sulphide at room temperature with SAW/BAW devices. The sensitive monolayer can be synthesized based on chemical compounds, which belongs to a class of thiacalix[n]arenas, mercapto halides, mercapto alcohols and chloromethylated thiacalix[n]arenas. The sensitive monolayer can be directly immobilized or anchored at the surface of a piezoelectric quartz substrate in a covalently bonded manner by means of direct printing process. The piezoelectric quartz substrate can be activated in basic medium or in acid medium before the immobilization of the sensitive monolayer in order to increase the population of OH groups. Thus, the synthesized sensitive monolayer exhibits a high site density, fast response and long-term stability for H2S sensing.
Abstract:
A method can be adapted for design and preparation of a matrix nanocomposite sensing film for hydrogen sulphide SAW/BAW detection at room temperature. A matrix nanocomposite can be synthesized by incorporating both single-wall and multi-wall thiolated carbon nanotubes into conductive organic polymers or ceramic nanocrystalline in a properly functionalized manner. A thin organic sensing film can be prepared based on the matrix nanocomposite. The matrix nanocomposite sensing film can be prepared on a surface of a SAW/BAW device by an additive process or a direct printing process. Finally, the sensing film can be consolidated by thermal annealing or laser annealing under ambient conditions in order to obtain the stable sensing film with higher sensitivity and electrical properties for a SAW/BAW based H2S sensor.
Abstract:
The design and synthesis of a matrix nanocomposite containing amino carbon nanotubes used as a functionalized sensing layer for carbon dioxide detection by means acoustic wave sensing devices, e.g., SAW/BAW devices. These sensing materials contain a type of amino carbon nanotubes (single walled or multi-walled) and a polymer (or other compounds) which are sensitive to carbon dioxide in the acoustic wave sensing device based gas sensors. The sensitivity of the matrix consisting of the amino carbon nanotubes and a polymer (or other compounds) is ensured by the presence of amino groups which can react at room temperature with CO2 in a reversible process to form carbamates.
Abstract:
A wireless monitoring system and method. A distributed electrical circuit can be printed on a dielectric film for wrapping pallets or containers in a logistic chain, wherein the distributed electrical circuit (e.g., a Wheatstone Bridge) detects a rupture of the film through an electrical resistance change of one or more elements of the distributed electrical circuit. The electrical resistance change is indicative of a potential tampering event. An electronic module can be provided that conditions and processes a signal transmitted from the distributed electrical circuit and thereafter transmits the signal wirelessly via an antenna to a monitoring station. Additionally, a monitoring station can be implemented, which communicates with a network and the electronic module, and permits a user in real time to receive data concerning the potential tampering event.
Abstract:
A nitrogen dioxide sensor comprising a first beam having a first functionalized sensing surface capable of sensing nitrogen dioxide, the first beam capable of producing a first resonant frequency; and a second beam having a second functionalized reference surface not capable of sensing nitrogen dioxide, the second beam capable of producing a second resonant frequency, wherein differential sensing of nitrogen dioxide may be performed, further wherein the first beam and the second beam are each functionalized with one or more soft bases having comparable viscoelastic properties is provided. In one embodiment, the sensor is a nano-sensor capable of low drift and accurate detection of nitrogen dioxide levels at the zeptogram level. Methods of making and using a nitrogen dioxide sensor are also provided.
Abstract:
Apparatus, methods, and systems for bonding a cover wafer to a MEMS threshold sensors located on a silicon disc. The cover wafer is trenched to form a region when bonded to the silicon wafer that produces a gap over the contact bond pads of the MEMS threshold sensor. The method includes a series of cuts that remove part of the cover wafer over the trenches to permit additional cuts that may avoid the contact bond pads of the MEMS threshold sensor. In addition the glass frit provides for isolation of the sensor with a hermetic seal. The cavity between the MEMS threshold sensor and the cover wafer may be injected with a gas such as nitrogen to influence the properties of the MEMS threshold sensor. The MEMS threshold sensor may be utilized to sense a threshold for pressure, temperature or acceleration.