Abstract:
An iron-based superalloy for high temperature 700° C. with coherent precipitation of cuboidal B2 nanoparticles, belongs to the field of heat-resistant stainless steel, including Fe, Cr, Ni, Al, Mo, W, Zr, B elements. C, Si, Mn, S, P, O, N are impurity elements. The weight percent (wt. %) of its alloy composition is Cr: 10.0˜12.0, Ni: 13.0˜15.0, Al: 6.0˜7.0, Mo: 2.0˜3.0, W: 0.3˜0.7, Zr: 0.03˜0.05, B: 0.004˜0.007, C≤0.02, Si≤0.20, Mn≤0.20, S≤0.01, P≤0.02, O≤0.005, N≤0.02, Fe: balance; and the atomic percent ratio of Zr/B is 1:1, the atomic percent ratio of Cr/(Mo+W) is 8:1, and the atomic percent ratio of Mo/W is 8:1. The coherent precipitation of cuboidal B2 nanoparticles in ferritic matrix through the alloy composition design.
Abstract:
A Cu—Ni—Mo alloy thin film, including Ni as a solution element and Mo as a diffusion barrier element. Ni and Mo are co-doped with Cu. The enthalpy of mixing between Mo and Cu is +19 kJ/mol, and the enthalpy of mixing between Mo and Ni is −7 kJ/mol. The atomic fraction of Mo/Ni is within the range of 0.06-0.20 or the weight faction of Mo/Ni within the range of 0.10-0.33. The total amount of Ni and Mo additions is within the range of 0.14-1.02 at. % or wt. %. A method for manufacturing the alloy thin film is also provided.