Abstract:
A motor drive device for driving a motor, which has a plurality of winding pairs, includes a plurality of inverter units for the plurality of winding pairs. The inverter units are coupled in parallel to a power source. A plurality of capacitors provided for the plurality of inverter units, and a plurality of power relays are disposed between the power supply and the inverter units. In particular, a power relay is provided for each of the inverter units. A control unit detects a short failure of the power relay, and simultaneously turns ON the power relays that do not have a short failure. In such manner, damage to the power relays as well as damage to other electronic components of the motor driver device due to a large electric current is prevented.
Abstract:
An electric motor drive apparatus includes multiple inverter sections arranged corresponding to winding sets of a motor, multiple relays that controls power supplies to the inverter sections, and a control unit. Each inverter section and corresponding winding set are referred to as a system. The control unit includes an obtaining section that obtains a winding current, a determination section that determines a fault occurrence, a specifying section that specifies a faulty system in which the fault occurs, an interrupting section that controls the relay corresponding to the faulty system to interrupt the power supply to the faulty system, and a vibrating section that controls the inverter section of a properly-operating system to add a vibration to an output torque from the electric motor. The vibrating section gradually increases a vibration component of the vibration added to the output torque from the electric motor.
Abstract:
The electric power steering apparatus has a plurality of power systems each including an inverter apparatus provided corresponding to a plurality of wiring sets of a motor thereof. The control section calculates the assist current to be supplied to the motor using a one power system failure-state map when the inverter apparatus or its corresponding wiring set of one of the power systems fails, or using a vehicle speed detection failure-state map when there is a failure in detecting the vehicle speed. The assist current limit value in the one power system failure-state map and the assist current limit value in the vehicle speed detection failure-state map are set to the same value.
Abstract:
A rotating electric machine for driving a drive object is provided. The rotating electric machine includes a motor case, a stator, a winding, a rotor, a shaft, a base cap, an end cap, an output rod, base cap holes, end cap holes, and through bolts. The base cap has base cap flanges formed on a circumferential edge and extending radially-outward beyond an outer wall of the motor case. The end cap has end cap flanges formed on a circumferential edge and extending radially-outward beyond the outer wall of the motor case. Base cap holes are formed on the base cap flanges and end cap holes in axial alignment with the base cap holes are formed on the end cap flanges. Through bolts fasten the base cap flanges to the end cap flanges.
Abstract:
In a motor driving device, a first relay portion is connected between a power source and an inverter portion, a second relay portion is connected between the first relay portion and the inverter portion, and a motor relay portion is connected between the inverter portion and a winding group of a motor. Inverter pre-driver circuits respectively drive switching elements of the inverter portion. A first pre-driver circuit drives the first relay portion. A second pre-driver circuit drives the second relay portion and the motor relay portion. A controller controls driving of the inverter portion, the first relay portion, the second relay portion, and the motor relay portion, and detects a failure of the first relay portion, the second relay portion, and the motor relay portion.