Abstract:
In a first location of a mass spectrometer, a plurality of ionized molecules of an ion source are selected that have mass-to-charge ratios within a mass-to-charge ratio window width. The plurality of selected ionized molecules are transmitted from a first to a second location. Reagent ions are transmitted to the second location to reduce a charge state of one or more of the plurality of selected ionized molecules. A mass analyzer is used to analyze the plurality of reduced ionized molecules and produce a mass spectrum. A compound is identified from a peak of the spectrum that has a mass-to-charge ratio less than or equal to the highest mass-to-charge ratio in the window width if the noise is multiply charged and greater than the highest mass-to-charge ratio in the window width if the noise is singly charged.
Abstract:
Systems and methods are provided for correcting uniform detector saturation of a mass analyzer using a calibration curve. In one method, a measured spectrum is received from a mass analyzer that includes a detector and an analog-to-digital converter (ADC) detector subsystem and that analyzes a beam of ions produced by an ion source that ionizes molecules of a sample using a processor. A total ion value of the measured spectrum is calculated by summing intensities of ions in the measured spectrum using the processor. A correction factor is determined by comparing the total ion value to a stored calibration curve that provides correction factors as a function of total ion values using the processor. Intensities of the measured spectrum are multiplied by the determined correction factor producing a corrected measured spectrum using the processor.
Abstract:
Systems and methods are provided for calculating and storing an average amplitude response for each peak of a mass spectrum during data acquisition. A mass analyzer is instructed to analyze N extractions of an ion beam, producing N sub-spectra. For each sub-spectrum of the N sub-spectra, a nonzero amplitude from an ADC detector subsystem is counted as one ion, producing a count of one for each ion. The ADC amplitudes and counts of the N sub-spectra are summed, producing a spectrum that includes a summed ADC amplitude and a total count for each ion. For each ion of the spectrum, an estimated ion count is calculated from a Poisson distribution of the total count of each ion for the N sub-spectra. For each ion of the spectrum, an average amplitude response is calculated by dividing the summed amplitude by the estimated ion count and stored.
Abstract:
In a first location of a mass spectrometer, a plurality of ionized molecules of an ion source are selected that have mass-to-charge ratios within a mass-to-charge ratio window width. The plurality of selected ionized molecules are transmitted from a first to a second location. Reagent ions are transmitted to the second location to reduce a charge state of one or more of the plurality of selected ionized molecules. A mass analyzer is used to analyze the plurality of reduced ionized molecules and produce a mass spectrum. A compound is identified from a peak of the spectrum that has a mass-to-charge ratio less than or equal to the highest mass-to-charge ratio in the window width if the noise is multiply charged and greater than the highest mass-to-charge ratio in the window width if the noise is singly charged.
Abstract:
Systems and methods are provided for correcting uniform detector saturation. In one method, a mass analyzer analyzes N extractions of an ion beam. A nonzero amplitude from an ADC detector subsystem is counted as one ion, producing a count of one for each ion of each sub-spectrum. The ADC amplitudes and counts of the N sub-spectra are summed, producing a spectrum that includes a summed ADC amplitude and a total count for each ion of the spectrum. A probability that the total count arises from single ions hitting the detector is calculated. For each ion of the spectrum where the probability exceeds a threshold value, an amplitude response is calculated, producing amplitude responses for ions found to be single ions hitting the detector. Amplitude responses are combined, producing a combined amplitude response. The total count is dynamically corrected using the combined amplitude response and the summed ADC amplitude.
Abstract:
Systems and related methods are disclosed herein that generally involve focusing dispersed ions using one or more DC ion funnels. In some embodiments, a DC ion funnel is provided that includes a plurality of ring-shaped electrodes, each having an aperture formed therein such that the funnel defines an interior volume extending between an ion inlet and an ion outlet. A controller applies a DC potential to each of the electrodes without applying an RF potential to any of the electrodes, such that ions entering the funnel are substantially confined within said volume. The interior volume can have any of a variety of shapes, such as cylindrical, frusto-conical, and curved frusto-conical. In addition, any of a variety of DC potentials can be applied to the plurality of electrodes.
Abstract:
An ion source and an ion guide chamber are provided. The ion guide chamber having a gas flow, the gas flow having a longitudinal velocity and a transverse velocity. The ion guide chamber having an exit aperture and at least one ion guide. The at least one ion guide having an entrance end and an exit end with an exit cross-section wherein the exit cross-section is sized to be smaller in area than the entrance cross-section. The at least one ion guide having a plurality of elongated electrodes wherein a gap between the elongated electrodes and the shape of the elongated electrodes in the vicinity of the gap are essentially the same along the length of the at least one ion guide for confining the ions in the vicinity of the gap by a combination of the transverse velocity of the gas and the RF voltage.
Abstract:
An ion source and an ion guide chamber are provided. The ion guide chamber having a gas flow, the gas flow having a longitudinal velocity and a transverse velocity. The ion guide chamber having an exit aperture and at least one ion guide. The at least one ion guide having an entrance end and an exit end with an exit cross-section wherein the exit cross-section is sized to be smaller in area than the entrance cross-section. The at least one ion guide having a plurality of elongated electrodes wherein a gap between the elongated electrodes and the shape of the elongated electrodes in the vicinity of the gap are essentially the same along the length of the at least one ion guide for confining the ions in the vicinity of the gap by a combination of the transverse velocity of the gas and the RF voltage.
Abstract:
Systems and methods are provided for correcting uniform detector saturation. In one method, a mass analyzer analyzes N extractions of an ion beam. A nonzero amplitude from an ADC detector subsystem is counted as one ion, producing a count of one for each ion of each sub-spectrum. The ADC amplitudes and counts of the N sub-spectra are summed, producing a spectrum that includes a summed ADC amplitude and a total count for each ion of the spectrum. A probability that the total count arises from single ions hitting the detector is calculated. For each ion of the spectrum where the probability exceeds a threshold value, an amplitude response is calculated, producing amplitude responses for ions found to be single ions hitting the detector. Amplitude responses are combined, producing a combined amplitude response. The total count is dynamically corrected using the combined amplitude response and the summed ADC amplitude.
Abstract:
The present disclosure generally provides ionization methods and devices for use in mass spectrometry. In some embodiments, the ionization methods and devices employ short laser pulses (e.g., pulses having pulsewidths in a range of about 2 fs to about 1 ps) at a high intensity (e.g., an intensity in a range of about 1 TW/cm2 to about 1000 TW/cm2) to ionize an analyte an ambient pressure greater than about 10−5 Torr (e.g., an ambient pressure in a range of about 1 atmosphere to about 100 atmospheres).
Abstract translation:本公开通常提供用于质谱法的电离方法和装置。 在一些实施方案中,电离方法和装置在高强度下使用短激光脉冲(例如,具有约2fs至约1ps范围内的脉冲宽度的脉冲)(例如,在约1TT / cm 2至约1W / cm 2的范围内的强度 约1000TT / cm 2)以使分析物离子化大于约10 -5乇的环境压力(例如,约1大气压至约100大气压的环境压力)。