Abstract:
A known compound and at least one adduct, modified form, or peptide of the known compound are separated from a sample mixture and analyzed. An XIC is calculated for each of M product ions of the known compound and L product ions of the at least one adduct, modified form, or peptide. A first XIC peak group is calculated from the M XICs and a second XIC peak group is calculated from the L XICs using curve subtraction. Representative first and second XIC peaks are selected for the two XIC peak groups. The retention time of the second XIC peak is shifted by an expected retention time difference found from a database. The retention time of the first XIC peak is verified as the retention time of the known compound if the difference of the retention times of the first and second XIC peaks is within a threshold.
Abstract:
Systems and methods are disclosed for analyzing a sample using overlapping precursor isolation windows. A mass analyzer of a tandem mass spectrometer is instructed to select and fragment at least two overlapping precursor isolation windows across a precursor ion mass range of a sample using a processor. The tandem mass spectrometer includes a mass analyzer that allows overlapping precursor isolation windows across the mass range of the sample.
Abstract:
Systems and methods are disclosed for analyzing a sample using overlapping precursor isolation windows. A mass analyzer of a tandem mass spectrometer is instructed to select and fragment at least two overlapping precursor isolation windows across a precursor ion mass range of a sample using a processor. The tandem mass spectrometer includes a mass analyzer that allows overlapping precursor isolation windows across the mass range of the sample.
Abstract:
Systems and methods prevent potentially convolved precursor ion peaks from being excluded in subsequent cycles of an IDA experiment so that additional product ion data is collected. A sample is ionized producing an ion beam. A plurality of cycles of an IDA experiment are performed on the ion beam. During each cycle of the IDA experiment and for each precursor ion peak on a filtered peak list produced in the filtering step of each cycle, several steps are performed. The precursor ion peak is identified in the precursor ion spectrum produced in the MS survey scan step of the cycle. It is determined if the precursor ion peak in the precursor ion spectrum includes a feature of convolution. If the precursor ion peak includes a feature of convolution, the precursor ion peak is prevented from being excluded in a filtering step of one or more subsequent cycles.
Abstract:
Systems and methods are disclosed for detecting compounds in a sample using a tandem mass spectrometer. A sample comprising a plurality of detectable compounds that have been separated in time over a time interval is introduced into a tandem mass spectrometer. A sample product ion spectra is obtained. The presence of one or more known compounds of interest in the sample product ion spectra is determined. A compound is identified as present in the sample if the score associated with said compound meets a threshold value set as indicative of the likely presence of the compound in the sample.
Abstract:
Systems and methods are provided for analyzing a sample using overlapping measured mass selection window widths. A mass range of a sample is divided into two or more target mass selection window widths using a processor. The two or more target widths can have the same width or variable widths. A tandem mass spectrometer is instructed to perform two or more fragmentation scans across the mass range using the processor. Each fragmentation scan of the two or more fragmentation scans includes a measured mass selection window width. The two or more measured widths of the two or more fragmentation scans can have the same width or variable widths. At least two of the two or more measured mass selection window widths overlap. The overlap in measured mass selection window widths corresponds to at least one target mass selection window width.
Abstract:
Systems and methods are used to rapidly screening samples. A fast sample introduction device that is non-chromatographic is instructed to supply each sample of a plurality samples to a tandem mass spectrometer using a processor. The fast sample introduction device can include a flow injection analysis device, an ion mobility analysis device, or a rapid sample cleanup device. The tandem mass spectrometer is instructed to perform fragmentation scans at two or more mass selection windows across a mass range of each sample of the plurality of samples using the processor. The two or more mass selection windows across the mass range can have fixed or variable window widths. The tandem mass spectrometer can be instructed to obtain a mass spectrum of the mass range before instructing the tandem mass spectrometer to perform the fragmentation scans.
Abstract:
Systems and methods are provided for analyzing a sample using overlapping measured mass selection window widths. A mass range of a sample is divided into two or more target mass selection window widths using a processor. The two or more target widths can have the same width or variable widths. A tandem mass spectrometer is instructed to perform two or more fragmentation scans across the mass range using the processor. Each fragmentation scan of the two or more fragmentation scans includes a measured mass selection window width. The two or more measured widths of the two or more fragmentation scans can have the same width or variable widths. At least two of the two or more measured mass selection window widths overlap. The overlap in measured mass selection window widths corresponds to at least one target mass selection window width.
Abstract:
Systems and methods are used to analyze a sample using variable mass selection window widths. A tandem mass spectrometer is instructed to perform at least two fragmentation scans of a sample with different mass selection window widths using a processor. The tandem mass spectrometer includes a mass analyzer that allows variable mass selection window widths. The selection of the different mass selection window widths can be based on one or more properties of sample compounds. The properties may include a sample compound molecular weight distribution that is calculated from a molecular weight distribution of expected compounds or is determined from a list of molecular weights for one or more known compounds. The tandem mass spectrometer can also be instructed to perform an analysis of the sample before instructing the tandem mass spectrometer to perform the at least two fragmentation scans of the sample.
Abstract:
A system and method is provided for monitoring a production process. In some aspects, the system may include an aseptic sampling device in fluidic connection with a process fluid, the aseptic sampling device operative to collect one or more samples from the process stream. A pretreatment device may be included to receive and pretreat the one or more samples. An analyzer is operative to analyze the pretreated samples and to produce one or more mass spectrometry (MS) spectra. A classifier receives and classifies the one or more MS spectra to provide a measure of product quality of the process fluid corresponding to the sampling location and time of sampling.