Abstract:
Embodiments are directed towards remotely generating encoding metadata at a remote content distributor for use by a local user computing device. The remote content distributor receives and encodes content. During or after the encoding process, the remote content distributor generates encoding metadata that indicates how the content was encoded by the remote content distributor. The remote content distributor provides the encoding metadata to the user computer device. The user computing device receives the content and the encoding metadata and encodes the content based on the encoding metadata. The user computing device can then provide the encoded content to another computing device for decoding and presentation to a user.
Abstract:
Embodiments are directed toward locally generating a replacement spot beam signal to be combined with other orbital television signals, where the replacement spot beam signal is generated from locally received over-the-air television signals. Over-the-air television signals are received at a user's premises via an over-the-air antenna and orbital signals are received at the user's premises via a satellite antenna. The orbital signals include a spot beam signal and other orbital signals. The spot beam signal is specifically generated for the geographical area associated with the over-the-air television signals. One or more available local channels are extracted from the over-the-air television signals and are converted into the replacement spot beam signal that is a satellite-compatible signal. The replacement spot beam, instead of the original spot beam signal, is then combined with the other orbital signals and provided to a content receiver.
Abstract:
Embodiments are directed towards remotely generating encoding metadata at a remote content distributor for use by a local user computing device. The remote content distributor receives and encodes content. During or after the encoding process, the remote content distributor generates encoding metadata that indicates how the content was encoded by the remote content distributor. The remote content distributor provides the encoding metadata to the user computer device. The user computing device receives the content and the encoding metadata and encodes the content based on the encoding metadata. The user computing device can then provide the encoded content to another computing device for decoding and presentation to a user.
Abstract:
Embodiments are directed towards remotely generating encoding metadata at a remote content distributor for use by a local user computing device. The remote content distributor receives and encodes content. During or after the encoding process, the remote content distributor generates encoding metadata that indicates how the content was encoded by the remote content distributor. The remote content distributor provides the encoding metadata to the user computer device. The user computing device receives the content and the encoding metadata and encodes the content based on the encoding metadata. The user computing device can then provide the encoded content to another computing device for decoding and presentation to a user.
Abstract:
Embodiments are directed towards remotely generating encoding metadata at a remote content distributor for use by a local user computing device. The remote content distributor receives and encodes content. During or after the encoding process, the remote content distributor generates encoding metadata that indicates how the content was encoded by the remote content distributor. The remote content distributor provides the encoding metadata to the user computer device. The user computing device receives the content and the encoding metadata and encodes the content based on the encoding metadata. The user computing device can then provide the encoded content to another computing device for decoding and presentation to a user.
Abstract:
Embodiments are directed towards remotely generating encoding metadata at a remote content distributor for use by a local user computing device. The remote content distributor receives and encodes content. During or after the encoding process, the remote content distributor generates encoding metadata that indicates how the content was encoded by the remote content distributor. The remote content distributor provides the encoding metadata to the user computer device. The user computing device receives the content and the encoding metadata and encodes the content based on the encoding metadata. The user computing device can then provide the encoded content to another computing device for decoding and presentation to a user.
Abstract:
Systems and methods of managing network connections are disclosed. The method includes receiving a communication from a media device that requests permission to allow a connection between the media device and a client device, processing the communication by querying at least one database with the identifying information for the client device, if a unique identifier for the client device is received from the database, comparing the unique identifier for the client device with a unique identifier for the media device, in the event that the unique identifier for the client device matches the unique identifier for the media device, returning a result to the media device that allows the connection between the media device and the client device, and in the event that the unique identifier for the client device does not match the unique identifier for the media device, returning a result to the media device that does not allow the connection between the media device and the client device.
Abstract:
Embodiments are directed toward locally generating a replacement spot beam signal to be combined with other orbital television signals, where the replacement spot beam signal is generated from locally received over-the-air television signals. Over-the-air television signals are received at a user's premises via an over-the-air antenna and orbital signals are received at the user's premises via a satellite antenna. The orbital signals include a spot beam signal and other orbital signals. The spot beam signal is specifically generated for the geographical area associated with the over-the-air television signals. One or more available local channels are extracted from the over-the-air television signals and are converted into the replacement spot beam signal that is a satellite-compatible signal. The replacement spot beam, instead of the original spot beam signal, is then combined with the other orbital signals and provided to a content receiver.
Abstract:
Embodiments are directed towards remotely generating encoding metadata at a remote content distributor for use by a local user computing device. The remote content distributor receives and encodes content. During or after the encoding process, the remote content distributor generates encoding metadata that indicates how the content was encoded by the remote content distributor. The remote content distributor provides the encoding metadata to the user computer device. The user computing device receives the content and the encoding metadata and encodes the content based on the encoding metadata. The user computing device can then provide the encoded content to another computing device for decoding and presentation to a user.
Abstract:
Embodiments are directed toward locally generating a replacement spot beam signal to be combined with other orbital television signals, where the replacement spot beam signal is generated from locally received over-the-air television signals. Over-the-air television signals are received at a user's premises via an over-the-air antenna and orbital signals are received at the user's premises via a satellite antenna. The orbital signals include a spot beam signal and other orbital signals. The spot beam signal is specifically generated for the geographical area associated with the over-the-air television signals. One or more available local channels are extracted from the over-the-air television signals and are converted into the replacement spot beam signal that is a satellite-compatible signal. The replacement spot beam, instead of the original spot beam signal, is then combined with the other orbital signals and provided to a content receiver.