Abstract:
Provided are an upper limb rehabilitation robot including: a sensing member that is mounted and fixed to an upper limb of a user and captures motion of the upper limb according to a movement intention of the user; a motion control unit that is electrically connected to the sensing member, calculates a movement direction, a distance or angle, a speed, and an auxiliary force (target value) needed for the upper limb to move, intended by the upper limb, based on the motion captured by using the sensing member, and generates and outputs a control signal according to the calculated movement direction, distance or angle, speed, and auxiliary force (target value); and a multi-joint robot, to an end of an arm of which the sensing member is coupled, wherein the multi-joint robot guides movement of the upper limb fixed to the sensing member to selectively move or rotate toward a food tray placed at a designated position of a table along an X-axis, a Y-axis, or a Z-axis and provides an assistance force to the upper limb.
Abstract:
An apparatus for remotely controlling field robots, includes: an interface unit; a work command generator generating a work command signal for operating field robots; an autonomous command generator which generates an autonomous operation command signal for controlling an operation of a second field robot when a user selects a following mode and the work command generator generates a work command signal for a first field robot to correspond to the following mode, or generates an autonomous operation command signal for controlling operations of the first field robot and the second field robot in order to operate an object of work when the user selects an object mode and the work command generator generates a work command signal for the object of work to correspond to the object mode; and a communication unit transmitting the generated autonomous operation command signal to the first field robot and the second field robots.
Abstract:
An apparatus for remotely controlling field robots, including: an interface unit; a work command generator generating a work command signal for operating field robots; an autonomous command generator which generates an autonomous operation command signal for controlling an operation of a second field robot when a user selects a following mode and the work command generator generates a work command signal for a first field robot to correspond to the following mode, or generates an autonomous operation command signal for controlling operations of the first field robot and the second field robot in order to operate an object of work when the user selects an object mode and the work command generator generates a work command signal for the object of work to correspond to the object mode; and a communication unit transmitting the generated autonomous operation command signal to the first and second field robots.