METHOD AND SYSTEM FOR COMPOUNDING FERTILIZER FROM MANURE WITHOUT NUTRIENT EMISSION

    公开(公告)号:US20190119174A1

    公开(公告)日:2019-04-25

    申请号:US15792442

    申请日:2017-10-24

    Applicant: DariTech, Inc.

    Abstract: To produce fertilizer, a system and method concentrates manure slurry in a mechanical vapor recompression evaporator (“MVR”) having a heat exchanger. The MVR receives the manure slurry within a first side to evaporate ammonia laden-water vapor from the slurry, leaving a nutrient concentrate. A compressor raises the evaporated ammonia-laden water vapor to a higher energy state. Within a second side of the heat exchanger, the compressed water vapor conveys heat to the slurry. Ammonia-laden water condenses in the second side at a process temperature to be conveyed to an ammonia stripping tower where the ammonia-laden water is dispersed into ammonia-laden water droplets. In the tower, a flow of air is directed across a surface of the ammonia-laden water droplets, the process temperature having been selected to promote the escape of ammonia gas from the ammonia-laden water droplets, the flow of air provided to entrain ammonia gas in the flow.

    METHOD AND SYSTEM FOR COMPOUNDING FERTILIZER FROM MANURE WITHOUT NUTRIENT EMISSION

    公开(公告)号:US20190119179A1

    公开(公告)日:2019-04-25

    申请号:US16055500

    申请日:2018-08-06

    Applicant: DariTech, Inc.

    Abstract: To produce fertilizer, a system and method concentrates manure slurry in a mechanical vapor recompression evaporator (“MVR”) having a heat exchanger. The MVR receives the manure slurry within a first side to evaporate ammonia laden-water vapor from the slurry, leaving a nutrient concentrate. A compressor raises the evaporated ammonia-laden water vapor to a higher energy state. Within a second side of the heat exchanger, the compressed water vapor conveys heat to the slurry. Ammonia-laden water condenses in the second side at a process temperature to be conveyed to an ammonia stripping tower where the ammonia-laden water is dispersed into ammonia-laden water droplets. In the tower, a flow of air is directed across a surface of the ammonia-laden water droplets, the process temperature having been selected to promote the escape of ammonia gas from the ammonia-laden water droplets, the flow of air provided to entrain ammonia gas in the flow.

    Method and system for compounding fertilizer from manure without nutrient emission

    公开(公告)号:US10919815B2

    公开(公告)日:2021-02-16

    申请号:US16055500

    申请日:2018-08-06

    Applicant: DariTech, Inc.

    Abstract: To produce fertilizer, a system and method concentrates manure slurry in a mechanical vapor recompression evaporator (“MVR”) having a heat exchanger. The MVR receives the manure slurry within a first side to evaporate ammonia laden-water vapor from the slurry, leaving a nutrient concentrate. A compressor raises the evaporated ammonia-laden water vapor to a higher energy state. Within a second side of the heat exchanger, the compressed water vapor conveys heat to the slurry. Ammonia-laden water condenses in the second side at a process temperature to be conveyed to an ammonia stripping tower where the ammonia-laden water is dispersed into ammonia-laden water droplets. In the tower, a flow of air is directed across a surface of the ammonia-laden water droplets, the process temperature having been selected to promote the escape of ammonia gas from the ammonia-laden water droplets, the flow of air provided to entrain ammonia gas in the flow.

    Method and system for compounding fertilizer from manure without nutrient emission

    公开(公告)号:US10683239B2

    公开(公告)日:2020-06-16

    申请号:US15792442

    申请日:2017-10-24

    Applicant: DariTech, Inc.

    Abstract: To produce fertilizer, a system and method concentrates manure slurry in a mechanical vapor recompression evaporator (“MVR”) having a heat exchanger. The MVR receives the manure slurry within a first side to evaporate ammonia laden-water vapor from the slurry, leaving a nutrient concentrate. A compressor raises the evaporated ammonia-laden water vapor to a higher energy state. Within a second side of the heat exchanger, the compressed water vapor conveys heat to the slurry. Ammonia-laden water condenses in the second side at a process temperature to be conveyed to an ammonia stripping tower where the ammonia-laden water is dispersed into ammonia-laden water droplets. In the tower, a flow of air is directed across a surface of the ammonia-laden water droplets, the process temperature having been selected to promote the escape of ammonia gas from the ammonia-laden water droplets, the flow of air provided to entrain ammonia gas in the flow.

Patent Agency Ranking