Abstract:
A removable adapter device is integrated into a cradle for holding a handheld scanner. The adapter device enables the cradle to be removed and reattached or removed and replaced with another cradle without needing access to or changing cables that connect the cradle to a host system. The adapter device provides a standardize configuration, connection, or both to allow simplified replacement of different manufacturer cradles and scanners without concern about the cable connection to the host system. The adapter device acts as an interface for data and power transmission between the cradle and the host system.
Abstract:
A removable adapter device is integrated into a cradle for holding a handheld scanner. The adapter device enables the cradle to be removed and reattached or removed and replaced with another cradle without needing access to or changing cables that connect the cradle to a host system. The adapter device provides a standardize configuration, connection, or both to allow simplified replacement of different manufacturer cradles and scanners without concern about the cable connection to the host system. The adapter device acts as an interface for data and power transmission between the cradle and the host system.
Abstract:
Device (100) for reading coded information, comprising a first optical group (10) including a first light source and first focusing means in optical alignment with said light source along an optical axis (X), and at least one further optical group including a further light source and further focusing means in optical alignment with the further light source along an optical axis (X1) parallel to the optical axis (X). The first optical group (10) and the further optical group (20) are housed in a single one-piece block (50) obtained through a single mechanical processing that, preferably, is a machine tool processing. The number of components of the reading device is thus reduced and the calibration operations necessary to achieve the desired optical alignment between light sources and with the respective focusing means are simplified and automated. Consequently, the costs of material and qualified workers are reduced, as is the time needed to calibrate the reading device.
Abstract:
An optical information acquisition device that comprises a main body and a connector assembly associated with said main body and comprising three connectors. The connector assembly can be rotated with respect to said main body between a first operating position wherein said connectors extend substantially perpendicularly to a first side of said main body and a second operating position in which said connectors extend substantially perpendicularly to a second side of said main body. The three connectors are positioned at the vertices of an acute-angled triangle, more preferably at the vertices of an equilateral triangle.
Abstract:
Device (100) for reading coded information, comprising a first optical group (10) including a first light source and first focusing means in optical alignment with said light source along an optical axis (X), and at least one further optical group including a further light source and further focusing means in optical alignment with the further light source along an optical axis (X1) parallel to the optical axis (X). The first optical group (10) and the further optical group (20) are housed in a single one-piece block (50) obtained through a single mechanical processing that, preferably, is a machine tool processing. The number of components of the reading device is thus reduced and the calibration operations necessary to achieve the desired optical alignment between light sources and with the respective focusing means are simplified and automated. Consequently, the costs of material and qualified workers are reduced, as is the time needed to calibrate the reading device.