Abstract:
A code reader comprises a first imager and a second imager configured to capture an image with different field of views, a first illuminator and a second illuminator configured to project a different illumination pattern, and a processor operably coupled to the imagers and the illuminators. The processor configured to activate the first imager and the first illuminator as a receiver pair responsive to detecting a first condition, activate the second imager and the second illuminator as a receiver pair responsive to detecting a second condition, and decode an optical code using an image captured by the selected receiver pair.
Abstract:
The disclosure relates to a light sensor system for determining the proximity of electronic devices by analyzing the polarization of detected light. The light sensor system includes a plurality of light sensors each including polarizers, such as linear plane polarizers and/or circular polarizers. The filtered light sensors are each operable to detect light passing through the respective polarizers. The light sensor system further includes an unfiltered light sensor operable to detect the presence of light. The light sensor system includes a processor in operable communication with each of the light sensors, the processor operable to determine whether the detected light is polarized or non-polarized based on the accumulated data of the various polarized light sensors and unfiltered light sensor.
Abstract:
A system and method of imaging barcodes may include generating a first light beam from an illumination surface having first dimensions. The first light beam may be directed into an input aperture of an optical component to form a second light beam. The input aperture has second dimensions, where the first dimensions are at least as large as the second dimensions. The second light beam having irradiation spatially distributed across the second light beam may be projected to read a machine-readable indicia.
Abstract:
The present disclosure relates to data readers including an improved imaging system that optimizes active and passive autofocus techniques for improving data reading functions. In an example, the data reader initially uses active autofocus techniques to focus a lens system based on a measurement reading by a rangefinder and acquire an image of an item in the field-of-view of the data reader. The data reader includes a decoding engine operable to decode an optical code of the item using the acquired image. If the decoding engine is unable to decode the optical code using the active autofocus technique, the data reader alternates to a passive autofocus technique to alter the focus settings of the lens system and reattempt the decoding process.
Abstract:
The present disclosure relates to data readers including an improved imaging system that optimizes active and passive autofocus techniques for improving data reading functions. In an example, the data reader initially uses active autofocus techniques to focus a lens system based on a measurement reading by a rangefinder and acquire an image of an item in the field-of-view of the data reader. The data reader includes a decoding engine operable to decode an optical code of the item using the acquired image. If the decoding engine is unable to decode the optical code using the active autofocus technique, the data reader alternates to a passive autofocus technique to alter the focus settings of the lens system and reattempt the decoding process.
Abstract:
The present invention relates to an active alignment method of a receiving device (2, 2′) including a sensor (4) and of a illumination device (6, 6′) including at least one light source (18, 8′) suitable for emitting a beam of light, including: —Assembling said receiving device (2, 2′); —Stably fixing said receiving device (2, 2′) on a chassis (30); —Actively aligning an optical group (11, 11′) of said illumination device (6, 6′) with respect to said light source (18, 18′); —Fixedly connecting said optical group (11, 11′) of said illumination device to said light source (18, 18′); —Actively aligning said illumination device (6, 6′) with respect to said receiving device (2, 2′); and —Stably fixing said illumination device (6, 6′) to said chassis (30).
Abstract:
The present disclosure relates to data readers including an improved imaging system that optimizes active and passive autofocus techniques for improving data reading functions. In an example, the data reader initially uses active autofocus techniques to focus a lens system based on a measurement reading by a rangefinder and acquire an image of an item in the field-of-view of the data reader. The data reader includes a decoding engine operable to decode an optical code of the item using the acquired image. If the decoding engine is unable to decode the optical code using the active autofocus technique, the data reader alternates to a passive autofocus technique to alter the focus settings of the lens system and reattempt the decoding process.
Abstract:
A code reader comprises a first imager and a second imager configured to capture an image with different field of views, a first illuminator and a second illuminator configured to project a different illumination pattern, and a processor operably coupled to the imagers and the illuminators. The processor configured to activate the first imager and the first illuminator as a receiver pair responsive to detecting a first condition, activate the second imager and the second illuminator as a receiver pair responsive to detecting a second condition, and decode an optical code using an image captured by the selected receiver pair.