Abstract:
Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
Abstract:
Metal layers of a smartcard may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Pre-laminated metal layers having an array of card sites, with each position having a defined area prepared for the later implanting of a transponder chip module characterized by different sized perforations and gaps around this defined area adjacent to the RFID slit(s), to facilitate the quick removal of the metal in creating a pocket to accept a transponder chip module.
Abstract:
Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
Abstract:
A wireless connection is established between at least two electronic modules (M1, M2) disposed separate from one another in a smartcard having a coupling frame so that the two modules may communicate (signals, data) with each other. The two modules may each have module antennas (MA-1, MA-2), and may be disposed in respective two openings (MO-1, MO-2) of a coupling frame (CF). A coupling antenna (CPA) having two coupler coils (CC-1, CC-2) disposed close to the two modules antennas of the two modules. The coupling antenna may have only the two coupler coils (CC-1, CC-2), connected with one another, without the peripheral card antenna (CA) component of a conventional booster antenna (BA). Energy harvesting is disclosed.
Abstract:
Metal layers of a smartcard may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Pre-laminated metal layers having an array of card sites, with each position having a defined area prepared for the later implanting of a transponder chip module characterized by different sized perforations and gaps around this defined area adjacent to the RFID slit(s), to facilitate the quick removal of the metal in creating a pocket to accept a transponder chip module.
Abstract:
Coupling frames comprising a conductive (metal) surface with a slit (S) or non-conductive stripe (NCS) extending from an outer edge to an inner position thereof, and overlapping a transponder device. A coupling frame with slit for coupling with an inductive or capacitive device (inductor or capacitor) may be used at any ISM frequency band to concentrate surface current around the slit. The coupling frame can be tuned to operate at a frequency of interested by introducing a resistive, inductive or capacitive element. The resonance frequency of the coupling frame can be matched to that of the transponder chip module to achieve optimum performance. Coupling frames with or without a transponder device may be integrated, overlapping, stacked or placed adjacent to one another to enhance system performance. Multiple coupling frames may be electrically isolated from one another by the application of a dielectric coating such Diamond Like Carbon (DLC).
Abstract:
Smartcards having (i) a metal card body (MCB) with a slit (S) overlapping a module antenna (MA) of a chip module (TCM) or (ii) multiple metal layers (M1, M2, M3) each having a slit (S1, S2, S3) offset or oriented differently than each other. A front metal layer may be continuous (no slit), and may be shielded from underlying metal layers by a shielding layer (SL). Metal backing inserts (MBI) reinforcing the slit(s) may also have a slit (S2) overlapping the module antenna. Diamond like coating filling the slit. Key fobs similarly fabricated. Plastic-Metal-Plastic smart cards and methods of manufacture are disclosed. Such cards may be contactless only, contact only, or may be dual-interface (contact and contactless) cards.
Abstract:
The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
Abstract:
RFID devices comprising (i) a transponder chip module (TCM, 1410) having an RFIC chip (IC) and a module antenna (MA), and (ii) a coupling frame (CF) having an electrical discontinuity comprising a slit (S) or non-conductive stripe (NCS). The coupling frame may be disposed closely adjacent the transponder chip module so that the slit overlaps the module antenna. The RFID device may be a payment object such as a jewelry item having a metal component modified with a slit (S) to function as a coupling frame. The coupling frame may be moved (such as rotated) to position the slit to selectively overlap the module antennas (MA) of one or more transponder chip modules (TCM-1, TCM-2) disposed in the payment object, thereby selectively enhancing (including enabling) contactless communication between a given transponder chip module in the payment object and another RFID device such as an external contactless reader. The coupling frame may be tubular. A card body construction for a metal smart card is disclosed.
Abstract:
Card body (CB) for a dual interface smart card (SC) comprising a metal foil (MF) or metallized layer (ML). An opening in the metal layer may be sized so that a coupler coil (CC) of a booster antenna (BA) is exposed. Improving coupling between a contactless reader and a transponder comprising providing a patch booster antenna (PBA) on a substrate disposed on the reader. Various booster antenna designs are disclosed.