Abstract:
Liquid dispensing assemblies including adhesive anchoring assemblies configured to adhere to a support surface external to a device such as a vehicle. An air vehicle includes (a) a fluid adhesive container assembly detachably attached to the air vehicle, wherein the fluid adhesive container assembly comprises: (i) an adhesive container comprising fluid adhesive; and (ii) one or more fibers, wherein the one or more fibers are configured, or a brush of fibers, or a fabric of fibers, is configured to conduct the fluid adhesive and to structurally support an adhesive bond between the one or more fibers and a surface; and (b) means for dispensing the fluid adhesive from the fluid adhesive container, to the one or more fibers.
Abstract:
Solid adsorbents, following their use for mercury removal from flue gas, that do not interfere with the ability of air-entraining additives (such as surfactants) to form stable bubbles when added to fly ash containing the adsorbents. The interference is overcome by heating the materials used in the manufacture of the adsorbent so that magnesium hydroxide and/or one or more alkali compounds containing one or more silicate, aluminate, and/or phosphate moiety, added or already present in the materials, binds multivalent cations present in the materials that could otherwise interfere with the surfactant activity.
Abstract:
Solid adsorbents, following their use for mercury removal from flue gas, that do not interfere with the ability of air-entraining additives (such as surfactants) to form stable bubbles when added to fly ash containing the adsorbents. The interference is overcome by heating the materials used in the manufacture of the adsorbent so that magnesium hydroxide and/or one or more alkali compounds containing one or more silicate, aluminate, and/or phosphate moiety, added or already present in the materials, binds multivalent cations present in the materials that could otherwise interfere with the surfactant activity.
Abstract:
A transmitter, for electrical appliance control by transmitting digital control signals on a power main, comprises two releasably connected parts, a first part comprising m actuators to initiate the generation of m control signals, and the second part containing a generator for the control signals, and a selector for selecting m out of n control signals. The selector is hidden by the first part when the parts are joined together and may be adjusted to select different groups of m control signals from the n possible signals. All n control signals can be produced, in groups of up to m signals for each condition of the selector. A monitor is also provided to monitor the main in order to achieve transmitter queueing dependent upon the selector settings at the transmitters.
Abstract:
The present invention relates to a method and system for treating a flow back fluid exiting a well site following stimulation of a subterranean formation. More specifically, the invention relates to processing the flow back fluid, and separating into a carbon dioxide rich stream and a carbon dioxide depleted stream, and continuing the separation until the carbon dioxide concentration in the flow back stream until the carbon dioxide concentration in the flow back gas diminishes to a point selected in a range of about 50-80 mol % in carbon dioxide concentration, after which the lower concentration carbon dioxide flow back stream continues to be separated into a carbon dioxide rich stream which is routed to waste or flare, and a hydrocarbon rich stream is formed.
Abstract:
Verification of patient sample electrolyte results using a separate quantitative measurement of sample resistivity. Sample resistivity may be used to measure small differences in resistivity of one sample to the next, and in comparison to a standard solution, in order to verify the results of sample electrolyte measurements being measured at the same time by, for example, individual ion selective electrodes (ISE) in a clinical analyzer. Providing a separate or secondary quantitative means for verification of the measured results of sample electrolytes using sample resistivity solves the problem of electrolyte result variability in sample electrolyte measurements. The process may compare a measured sample resistivity to an expected resistivity value as a verification of the accuracy of individual electrolyte results. Suspect samples—e.g., where the electrolyte resistivity results do not fit the expected resistivity—may be flagged. This separate verification step provides added confidence in the measured electrolyte results and can identify when problems occur or interferences are present in real time.
Abstract:
Solid adsorbents, following their use for mercury removal from flue gas, that do not interfere with the ability of air-entraining additives (such as surfactants) to form stable bubbles when added to fly ash containing the adsorbents. The interference is overcome by heating the materials used in the manufacture of the adsorbent so that magnesium hydroxide and/or one or more alkali compounds containing one or more silicate, aluminate, and/or phosphate moiety, added or already present in the materials, binds multivalent cations present in the materials that could otherwise interfere with the surfactant activity.
Abstract:
Feed air is separated in a membrane system, with recovered nitrogen being purified in a deoxo unit and dried in an adsorbent dryer using high temperature purge gas. The heat generated in the deoxo unit can be used to satisfy the thermal energy requirements of dryer regeneration, without decrease in product recovery. Membrane permeate gas can be used for purge at high purge/feed ratio to reduce the energy requirements of bed regeneration.
Abstract:
A gas supply system comprising an atmospheric vaporizer and a powered heat exchanger in series each having a rated capacity at least equal to the design gas usage rate.