Abstract:
Optical regeneration is expensive to implement and maintain. A method or corresponding apparatus in an example embodiment of the present invention enables a user to plan an optical regeneration in a network with a reduction of optical regeneration compared to unplanned deployment. An optical regeneration planning tool according to an example embodiment of the present invention can graphically display a representation of a network topology with optical regeneration sites and enable the user to plan optical regenerations at a subset of the sites as a function of characteristics of models of optical network elements and paths within the network topology. Through use of the optical regeneration planning tool, a service provider can save on network deployment and future servicing of optical regeneration equipment.
Abstract:
A method to provision routes in a network having a plurality of nodes and a plurality of links connecting various nodes. The method includes determining a route between a designated source node and a designated destination node based on a preselected routing algorithm and one of (i) a designated node of interest and (ii) a designated link of interest, and outputting information indicating the determined route.
Abstract:
Increasing data rates in next-generation optical networks requires a change in the type of optical modulation used to encode optical signals carried by the optical networks. Different types of optical modulation incur different optical impairments, which may degrade the fidelity of the optical signals by reducing the optical signal-to-noise ratio (OSNR). A method or corresponding apparatus in an example embodiment of the present invention provides a planning tool for deploying an optical network in a manner based on the optical modulation that reduces the cost and complexity of the deployed network. In one embodiment, the disclosed planning tool may adjust a model of the optical network to be deployed by changing the topology and/or the number and/or type of optical network elements in response to optical impairments for a given optical modulation.
Abstract:
An all-optical cross-connect switching system provides optical switching that may reduce processing requirements by three orders of magnitude over conventional techniques by associating at least one optical detector with an optical beam steering element. In one embodiment, a first beam steering element, having a reflective surface in optical association with a first optical fiber array, and a second beam steering element, having a reflective surface in optical association with a second optical fiber array, are optically arranged to direct an optical beam from a first optical fiber in the first optical fiber array to a second optical fiber in the second optical fiber array. The optical detector provides information about a first position of the optical beam on the second beam steering element. Based on this information, the angle of the first beam steering element may be adjusted to cause the optical beam to change to a second position on the second beam steering element.
Abstract:
When planning and maintaining a network, it may be very difficult for a network provider to organize variations of equipment rack installations at several different sites. Present methods of planning installation configurations in a network involve planning the same equipment installation configuration at all sites, planning a limited number of variations, or planning multiple variations but, with difficulty, tracking and changing configurations. A method or corresponding apparatus in an example embodiment of the present invention provides a tool for simplifying the planning of multiple network element installation configurations at multiple sites within a network. The benefits include fewer required truck rolls, resulting in reduced costs before and after deployment of installation configurations. In one embodiment, the disclosed planning tool allows users to access and change generic installation configurations according to customizable options to allow users to produce and store customized templates of multiple network element installation configurations.
Abstract:
Due to demand for more network bandwidth, a need for multi-user optical network topologies has, and will continue to, increase. A method or corresponding apparatus in embodiments of the present invention provide for an availability determination tool for determining and displaying wavelength and subrate availabilities within a network. Benefits of embodiments of a tool include allowing a user to identify the availability and capacity of any wavelength on any network, via an interactive graphical user interface, such as by using three-dimensional representations. In one embodiment, the disclosed availability determination tool allows users to locate and view any combination of available wavelengths between nodes in an optical network topology, and generate graphical and tabular reports of the availability in order to maintain an efficient and organized method or apparatus for determining and controlling wavelengths in a network. Consequently, service providers using the tool can keep performance rates high and costs low.
Abstract:
An enhanced Dense Wave Division Multiplexing (DWDM) network is optimized through bundling subchannel traffic in DWDM channels at network nodes and “hubbing” the DWDM channels at nodes receiving a relatively higher volume of aggregate traffic than other nodes. The optimization can eliminate low rate links and supporting network equipment. The bundling and hubbing may also be used independently from one another. The DWDM network may be enhanced with SONET, SDH, Ethernet, ATM, or other technology. The DWDM network may be a BLSR, UPSR, point-to-point, mesh, or other network configuration.
Abstract:
Optical regeneration is expensive to implement and maintain. A method or corresponding apparatus in an example embodiment of the present invention enables a user to plan an optical regeneration in a network with a reduction of optical regeneration compared to unplanned deployment. An optical regeneration planning tool according to an example embodiment of the present invention can graphically display a representation of a network topology with optical regeneration sites and enable the user to plan optical regenerations at a subset of the sites as a function of characteristics of models of optical network elements and paths within the network topology. Through use of the optical regeneration planning tool, a service provider can save on network deployment and future servicing of optical regeneration equipment.
Abstract:
An all-optical cross-connect switching system provides optical switching that may reduce processing requirements by three orders of magnitude over conventional techniques by associating at least one optical detector with an optical beam steering element. In one embodiment, a first beam steering element, having a reflective surface in optical association with a first optical fiber array, and a second beam steering element, having a reflective surface in optical association with a second optical fiber array, are optically arranged to direct an optical beam from a first optical fiber in the first optical fiber array to a second optical fiber in the second optical fiber array. The optical detector provides information about a first position of the optical beam on the second beam steering element. Based on this information, the angle of the first beam steering element may be adjusted to cause the optical beam to change to a second position on the second beam steering element.
Abstract:
Fault management and providing resilience against failures is an useful for many networks. Protection techniques are used to ensure that networks can continue to provide reliable service and to provide redundant capacity within a network to reroute traffic in presence of a failure. A method or corresponding apparatus according to an example embodiment of the present invention relates to determining availability in a network. The example embodiment calculates availability on a per demand basis for working, protection, and restoration paths among all demands in the network and reports the availability. The reported availability may be used to plan and suggest changes to the network or to recommend addition of equipment to improve the availability of the network while ensuring that service level agreements are satisfied.