Detecting conflicts between multiple different signals within imagery

    公开(公告)号:US12182898B2

    公开(公告)日:2024-12-31

    申请号:US18208757

    申请日:2023-06-12

    Abstract: This disclosure relates to advanced signal processing technology including signal encoding. One combination includes an apparatus comprising: memory for storing image data, the image data comprising a plurality of color separations or channels, in which the image data comprises at least a first type of machine-readable symbology comprising a 1D barcode represented therein and a second type of machine-readable symbology comprising a first signal represented therein, in which the second type of machine-readable symbology comprises a different type of machine-readable symbology relative to the first type of machine-readable symbology, the 1D barcode comprising a first plural-bit code and the first signal comprising a second plural-bit code; a barcode reader configured to analyze the image data to decode the 1D barcode to obtain the first plural-bit code; a signal decoder configured to analyze one or more color separations or channels of the plurality of color separations or channels to decode the first signal to obtain the second plural-bit code; one or more processors configured to determine whether the second plural-bit code and the first plural-bit code conflict; and to identify a conflict based on a conflict determination. Of course, other features and combinations are described as well.

    Detecting conflicts between multiple different encoded signals within imagery, using only a subset of available image data

    公开(公告)号:US11715172B2

    公开(公告)日:2023-08-01

    申请号:US17671431

    申请日:2022-02-14

    Abstract: This disclosure relates to advanced signal processing technology including steganographic embedding and digital watermarking. One combination disclosed in the description includes an image processing method. The method includes: obtaining an image comprising a plurality of color channels; for each color channel of the plurality of color channels, creating a grayscale version of the color channel and creating an inverted greyscale version of the color channel; analyzing the grayscale inverted version and the grayscale non-inverted version to locate image areas including an encoded signal, said analyzing yielding a plurality of image areas; generating one or more detectability measures corresponding to the encoded signal for each of the plurality of image areas; for each color channel selecting only one (1) image area as a validation point based on one or more generated detectability measures for that color channel; and generating information associated with a spatial location of each of the validation points in the image. Of course, other features and combinations are described as well.

    METHODS AND ARRANGEMENTS TO AID RECYCLING

    公开(公告)号:US20220331841A1

    公开(公告)日:2022-10-20

    申请号:US17721694

    申请日:2022-04-15

    Abstract: A waste stream is analyzed and sorted to segregate different items for recycling. Certain features of the technology improve the accuracy with which waste stream items are diverted to collection repositories. Other features concern adaptation of neural networks in accordance with context information sensed from the waste. Still other features serve to automate and simplify maintenance of machine vision systems used in waste sorting. Yet other aspects of the technology concern marking 2D machine readable code data on items having complex surfaces (e.g., food containers with integral ribbing for structural strength or juice pooling), to mitigate issues that such surfaces can introduce in code reading. Still other aspects of the technology concern prioritizing certain blocks of conveyor belt imagery for analysis. Yet other aspects of the technology concern joint use of near infrared spectroscopy, artificial intelligence, digital watermarking, and/or other techniques, for waste sorting. A variety of further features and arrangements are also detailed.

    Compensating for geometric distortion of images in constrained processing environments

    公开(公告)号:US11348209B2

    公开(公告)日:2022-05-31

    申请号:US17027287

    申请日:2020-09-21

    Inventor: Vojtech Holub

    Abstract: An image processing method determines a geometric transform of a suspect image by efficiently evaluating a large number of geometric transform candidates in environments with limited processing resources. Processing resources are conserved by using complementary methods for determining a geometric transform of an embedded signal. One method excels at higher geometric distortion, and specifically, distortion caused by greater tilt angle of a camera. Another method excels at lower geometric distortion, for weaker signals. Together, the methods provide a more reliable detector of an embedded data signal in image across a larger range of distortion while making efficient use of limited processing resources in mobile devices.

    METHODS AND ARRANGEMENTS FOR SORTING ITEMS, USEFUL IN RECYCLING

    公开(公告)号:US20220055071A1

    公开(公告)日:2022-02-24

    申请号:US17470674

    申请日:2021-09-09

    Abstract: A plastic item, such as a beverage bottle, can convey two distinct digital watermarks, encoded using two distinct signaling protocols. A first, printed label watermark conveys a retailing payload, including a Global Trade Item Number (GTIN) used by a point-of-sale scanner in a retail store to identify and price the item when presented for checkout. A second, plastic texture watermark may convey a recycling payload, including data identifying the composition of the plastic. The use of two different signaling protocols assures that a point-of-sale scanner will not spend its limited time and computational resources working to decode the recycling watermark, which may lack data needed for retail checkout. In some embodiments, a recycling apparatus makes advantageous use of both types of watermarks to identify the plastic composition of the item (e.g., relating GTIN to plastic type using an associated database), thereby increasing the fraction of items that are correctly identified for sorting and recycling. In other embodiments the plastic item (or a label thereon) bears only a single watermark. A great number of other features and arrangements are also detailed.

    Detecting conflicts between multiple different signals within imagery

    公开(公告)号:US11188997B2

    公开(公告)日:2021-11-30

    申请号:US16988366

    申请日:2020-08-07

    Abstract: This disclosure relates to advanced signal processing technology including signal encoding. One combination includes an apparatus comprising: memory for storing image data, the image data comprising a plurality of color separations or channels, in which the image data comprises at least a first type of machine-readable symbology comprising a 1D barcode represented therein and a second type of machine-readable symbology comprising a first signal represented therein, in which the second type of machine-readable symbology comprises a different type of machine-readable symbology relative to the first type of machine-readable symbology, the 1D barcode comprising a first plural-bit code and the first signal comprising a second plural-bit code; a barcode reader configured to analyze the image data to decode the 1D barcode to obtain the first plural-bit code; a signal decoder configured to analyze one or more color separations or channels of the plurality of color separations or channels to decode the first signal to obtain the second plural-bit code; one or more processors configured to determine whether the second plural-bit code and the first plural-bit code conflict; and to identify a conflict based on a conflict determination. Of course, other features and combinations are described as well.

    RECYCLING METHODS AND SYSTEMS, AND RELATED PLASTIC CONTAINERS

    公开(公告)号:US20210352192A1

    公开(公告)日:2021-11-11

    申请号:US17371964

    申请日:2021-07-09

    Abstract: A plastic item, such as a beverage bottle, conveys two distinct digital watermarks, encoded using two distinct signaling protocols. A first, printed label watermark conveys a retailing payload, including a Global Trade Item Number (GTIN) used by a point-of-sale scanner in a retail store to identify and price the item when presented for checkout. A second, plastic texture watermark conveys a recycling payload, including data identifying the composition of the plastic. The use of two different signaling protocols assures that a point-of-sale scanner will not spend its limited time and computational resources working to decode the recycling watermark, which lacks the data needed for retail checkout. In some embodiments, a recycling apparatus makes advantageous use of both types of watermarks to identify the plastic composition of the item (e.g., relating GTIN to plastic type using an associated database), thereby increasing the fraction of items that are correctly identified for sorting and recycling. A great number of other features and arrangements are also detailed.

    DETECTING CONFLICTS BETWEEN MULTIPLE DIFFERENT SIGNALS WITHIN IMAGERY

    公开(公告)号:US20210027413A1

    公开(公告)日:2021-01-28

    申请号:US16988366

    申请日:2020-08-07

    Abstract: This disclosure relates to advanced signal processing technology including signal encoding. One combination includes an apparatus comprising: memory for storing image data, the image data comprising a plurality of color separations or channels, in which the image data comprises at least a first type of machine-readable symbology comprising a 1D barcode represented therein and a second type of machine-readable symbology comprising a first signal represented therein, in which the second type of machine-readable symbology comprises a different type of machine-readable symbology relative to the first type of machine-readable symbology, the 1D barcode comprising a first plural-bit code and the first signal comprising a second plural-bit code; a barcode reader configured to analyze the image data to decode the 1D barcode to obtain the first plural-bit code; a signal decoder configured to analyze one or more color separations or channels of the plurality of color separations or channels to decode the first signal to obtain the second plural-bit code; one or more processors configured to determine whether the second plural-bit code and the first plural-bit code conflict; and to identify a conflict based on a conflict determination. Of course, other features and combinations are described as well.

Patent Agency Ranking