Abstract:
The invention relates to a process for the production of hexahydro-iso-alpha-acids starting from iso-alpha-acids (or tetrahydro-iso-alpha-acids) in which iso-alpha-acids (or tetrahydro-iso-alpha-acids) are mixed with a heterogeneous ruthenium containing catalyst, that catalyzes the hydrogenation from iso-alpha-acids or tetrahydro-iso-alpha-acids to hexahydro-iso-alpha-acids, either in solvent-free conditions, or in the presence of a solvent phase (e.g. carbon dioxide, water, ethanol or another organ-ic solvent, or mixtures thereof), and in the absence or presence of other hop compounds (such as beta-acids). The resulting mix-ture is then subjected to a temperature at which the iso-alpha-acid (or tetrahydro-iso-alpha-acid) containing reaction medium is sufficiently low in viscosity to allow easy mixing with the heterogeneous ruthenium containing catalyst and held under a hydrogen containing atmosphere (either pure hydrogen gas or mixed with an inert gas) for a reaction tune sufficient to effect high conver-sion of the iso-alpha-acid (or tetrahydro-iso-alpha-acid) reactant into the hexahydro-iso-alpha-acid product. The molar ratio of iso-alpha-acid or tetrahydro-iso-alpha-acid to ruthenium varies between 1:1 and 2000:1. After the hydrogenation process, the hetero-geneous ruthenium containing catalyst can be separated from the hexahydro-iso-alpha-acid product phase by centrifugation, filtra-tion, decantation or other liquid-solid separation techniques. The hydrogenation process can be performed batch-wise or alterna-tively in continuous mode.
Abstract:
The invention relates to a process for the production of iso-alpha-acids starting from hop alpha-acids in which an hop alpha-acid containing feed is contacted with a heterogeneous alkaline earth metal based catalyst, that essentially does not dissolve in the alpha-acid containing feed or in the iso-alpha-acid product phase, either in solvent-free conditions or in the presence of water, carbon dioxide, or an organic solvent or a mixture thereof. The resulting mixture is subjected to a temperature of at least 293 K, preferably under an inert atmosphere, for a time sufficient to effect high conversion of the alpha-acid reactant into the iso-alpha-acid product. The molar ratio of alpha-acid to earth alkaline metal (Mg, Ca, Sr, Ba) varies preferably between 0.2 and 20. After the isomerization process, the heterogeneous alkaline earth metal based catalyst can be quantitatively separated from the iso-alpha-acid product phase by liquid-solid separation techniques.
Abstract:
The invention relates to a process for the production of iso-alpha-acids starting from hop alpha-acids in which an hop alpha-acid containing feed is contacted with a heterogeneous alkaline earth metal based catalyst, that essentially does not dissolve in the alpha-acid containing feed or in the iso-alpha-acid product phase, either in solvent-free conditions or in the presence of water, carbon dioxide, or an organic solvent or a mixture thereof. The resulting mixture is subjected to a temperature of at least 293 K, preferably under an inert atmosphere, for a time sufficient to effect high conversion of the alpha-acid reactant into the iso-alpha-acid product. The molar ratio of alpha-acid to earth alkaline metal (Mg, Ca, Sr, Ba) varies preferably between 0.2 and 20. After the isomerisation process, the heterogeneous alkaline earth metal based catalyst can be quantitatively separated from the iso-alpha-acid product phase by liquid-solid separation techniques.
Abstract:
The invention relates to a process for the production of hexahydro-iso-alpha-acids starting from iso-alpha-acids (or tetrahydro-iso-alpha-acids) in which iso-alpha-acids (or tetrahydro-iso-alpha-acids) are mixed with a heterogeneous ruthenium containing catalyst, that catalyzes the hydrogenation from iso-alpha-acids or tetrahydro-iso-alpha-acids to hexahydro-iso-alpha-acids, either in solvent-free conditions, or in the presence of a solvent phase (e.g. carbon dioxide, water, ethanol or another organic solvent, or mixtures thereof), and in the absence or presence of other hop compounds (such as beta-acids). The resulting mixture is then subjected to a temperature at which the iso-alpha-acid (or tetrahydro-iso-alpha-acid) containing reaction medium is sufficiently low in viscosity to allow easy mixing with the heterogeneous ruthenium containing catalyst and held under a hydrogen containing atmosphere (either pure hydrogen gas or mixed with an inert gas) for a reaction time sufficient to effect high conversion of the iso-alpha-acid (or tetrahydro-iso-alpha-acid) reactant into the hexahydro-iso-alpha-acid product.
Abstract:
The invention relates to a process for the production of iso-alpha-acids starting from alpha-acids in which an alpha-acid containing hop extract is mixed with a carbon-containing chemical compound with one or more functional groups containing a (basic) nitrogen atom with a lone pair (or mixtures thereof), either in solvent-free conditions or in the presence of solvents and preferably under an oxygen-free atmosphere. The resulting mixture is subjected to a temperature of at least 278 K for a time sufficient to effect the intended conversion of the alpha-acid reactant into the iso-alpha-acid product. The present invention further relates to iso-alpha-acid compositions obtained by said improved isomerisation process and to the use of said iso-alpha-acid compositions as bittering formulation and/or as source to obtain reduced or hydrogenated iso-alpha-acid compositions.
Abstract:
The invention relates to a process for the production of iso-alpha-acids starting from alpha-acids in which an alpha-acid containing hop extract is mixed with a carbon-containing chemical compound with one or more functional groups containing a (basic) nitrogen atom with a lone pair (or mixtures thereof), either in solvent-free conditions or in the presence of solvents and preferably under an oxygen-free atmosphere. The resulting mixture is subjected to a temperature of at least 278 K for a time sufficient to effect the intended conversion of the alpha-acid reactant into the iso-alpha-acid product. The present invention further relates to iso-alpha-acid compositions obtained by said improved isomerisation process and to the use of said iso-alpha-acid compositions as bittering formulation and/or as source to obtain reduced or hydrogenated iso-alpha-acid compositions.
Abstract:
Devices for detecting analytes or analogues thereof in a biological sample are disclosed. The device includes a solid support. The solid support has several juxtaposed zones. The sample is able to migrate from a sample receiving zone towards a detection zone. The analyte, if present, is detected in the detection zone. Both zones have material allowing a capillary flow of the sample through the zones. In between the zones, there is an intermediate zone of transport of the sample which is free from any capillary material. This allows the ample to migrate by gravitational forces on the support laid in a vertical position. Methods for detecting analytes or analogues thereof in a biological sample using the device are also disclosed.
Abstract:
The present invention relates to methods and devices for detecting one or more analytes in a biological sample, preferably a clean liquid sample. This invention in particular relates to improved rapid tests such as “dipsticks”, “lateral flow” devices and “flow-through” devices. The invention in particular relates to oligochromatographic devices that make use of a peptide- or hapten-coupled oligonucleotide and a reagent specifically recognizing the hapten or peptide and a conjugated probe that hybridizes specifically to a target sequence. It allows to detect specifically the presence of a polynucleotides directly or after molecular amplification steps with the use of a specific genuine internal control and a chromatographic control.
Abstract:
Devices for detecting analytes or analogues thereof in a biological sample are disclosed. The device includes a solid support. The solid support has several juxtaposed zones. The sample is able to migrate from a sample receiving zone towards a detection zone. The analyte, if present, is detected in the detection zone. Both zones have material allowing a capillary flow of the sample through the zones. In between the zones, there is an intermediate zone of transport of the sample which is free from any capillary material. This allows the ample to migrate by gravitational forces on the support laid in a vertical position. Methods for detecting analytes or analogues thereof in a biological sample using the device are also disclosed.
Abstract:
The present invention relates to methods and devices for detecting one or more analytes or analyte products in a biological sample. This invention in particular relates to improved rapid tests such as “dipsticks” and “lateral flow” devices. The invention in particular relates to chromatographic device made of two active sides, in order to allow multiplex detections, quantitative or semi-quantitative detections, use of multiple sizes and kinds of particles or microspheres, use of different nitrocellulose porosities, use of different kinds of membranes. The devices described in this invention allow to detect or identify various biologicals or chemicals with one manipulation.