Abstract:
A semiconductor device includes a III-nitride substrate and a channel structure coupled to the III-nitride substrate. The channel structure comprises a first III-nitride epitaxial material and is characterized by one or more channel sidewalls. The semiconductor device also includes a source region coupled to the channel structure. The source region comprises a second III-nitride epitaxial material. The semiconductor device further includes a III-nitride gate structure coupled to the one or more channel sidewalls, a gate metal structure in electrical contact with the III-nitride gate structure, and a dielectric layer overlying at least a portion of the gate metal structure. A top surface of the dielectric layer is substantially co-planar with a top surface of the source region.
Abstract:
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
Abstract:
Processes for forming isolation structures for semiconductor devices include forming a submerged floor isolation region and a filed trench which together enclose an isolated pocket of the substrate. One process aligns the trench to the floor isolation region. In another process a second, narrower trench is formed in the isolated pocket and filled with a dielectric material while the dielectric material is deposited so as to line the walls and floor of the first trench. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
Abstract:
A high-voltage transistor device comprises a spiral resistive field plate over a first well region between a drain region and a source region of the high-voltage transistor device, wherein the spiral resistive field plate is separated from the first well region by a first isolation layer, and is coupled between the drain region and the source region. The high-voltage transistor device further comprises a plurality of first field plates over the spiral resistive field plate with each first field plate covering one or more segments of the spiral resistive field plate, wherein the plurality of first field plates are isolated from the spiral resistive field plate by a first dielectric layer, and wherein the plurality of first field plates are isolated from each other, and a starting first field plate is connected to the source region.
Abstract:
An example control element for use in a power supply includes a high-voltage transistor and a control circuit to control switching of the high-voltage transistor. The high-voltage transistor includes a drain region, source region, tap region, drift region, and tap drift region, all of a first conductivity type. The transistor also includes a body region of a second conductivity type. An insulated gate is included in the transistor such that when the insulated gate is biased a channel is formed across the body region to form a conduction path between the source region and the drift region. A voltage at the tap region with respect to the source region is substantially constant and less than a voltage at the drain region with respect to the source region in response to the voltage at the drain region exceeding a pinch off voltage.
Abstract:
Power devices with super junctions and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a power device includes forming an epitaxial layer on a substrate material and forming a trench in the epitaxial layer. The trench has a first sidewall, a second sidewall, and a bottom between the first and second sidewalls. The method also includes forming an insulation material on at least one of the first and second sidewalls of the trench and diffusing a dopant into the epitaxial layer via at least one of the first and second sidewalls of the trench via the insulation material.
Abstract:
An improved power device with a self-aligned suicide and a method for fabricating the device are disclosed. An example power device is a vertical power device that includes contacts formed on gate and body contact regions by an at least substantially self-aligned silicidation (e.g., salicide) process. The example device may also include one or more sidewall spacers that are each at least substantially aligned between edges of the gate region and the body contact region. The body contact region may also be implanted into the device in at least substantial self-alignment to the sidewall spacer. The method may also include an at least substantially self-aligned silicon etch.
Abstract:
A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor. The circuit further includes a second transistor disposed in a second substrate. A first terminal of the second transistor coupled to the external voltage.
Abstract:
A transistor is formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench.
Abstract:
A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor. The circuit further includes a second transistor disposed in a second substrate. A first terminal of the second transistor coupled to the external voltage.