Abstract:
Ultrasonic through metal communication systems are an effective solution for transmitting data across a metal barrier when the structural integrity of the barrier cannot be compromised by physically penetrating it. Substantial improvements in through metal communication systems have been made in recent years, enabling high speed communications of up to 15 Mbps, as well as power transmission up to 30 W across flat walls. A system is described that allows for ultrasonic through metal communication across the wall of a steel tube. Primary challenges of 1) transducer contact, 2) curvature effect on echoes, and 3) alignment are analyzed and addressed through the use of radial mode piezoelectric transducers, transducer “horns”, and Electromagnetic Acoustic Transducers (EMATs). The resulting system shows no significant loss due to changes in alignment, allows for the use of either piezoelectric transducers or EMATs externally, and achieves max data rates of approximately 600 kbps without echo equalization.
Abstract:
Ultrasonic through metal communication systems are an effective solution for transmitting data across a metal barrier when the structural integrity of the barrier cannot be compromised by physically penetrating it. Substantial improvements in through metal communication systems have been made in recent years, enabling high speed communications of up to 15 Mbps, as well as power transmission up to 30 W across flat walls. A system is described that allows for ultrasonic through metal communication across the wall of a steel tube. Primary challenges of 1) transducer contact, 2) curvature effect on echoes, and 3) alignment are analyzed and addressed through the use of radial mode piezoelectric transducers, transducer “horns”, and Electromagnetic Acoustic Transducers (EMATs). The resulting system shows no significant loss due to changes in alignment, allows for the use of either piezoelectric transducers or EMATs externally, and achieves max data rates of approximately 600 kbps without echo equalization.
Abstract:
A malware detection system and method detects changes in host behavior indicative of malware execution. The system uses linear discriminant analysis (LDA) for feature extraction, multi-channel change-point detection algorithms to infer malware execution, and a data fusion center (DFC) to combine local decisions into a host-wide diagnosis. The malware detection system includes sensors that monitor the status of a host computer being monitored for malware, a feature extractor that extracts data from the sensors corresponding to predetermined features, local detectors that perform malware detection on each stream of feature data from the feature extractor independently, and a data fusion center that uses the decisions from the local detectors to infer whether the host computer is infected by malware.
Abstract:
A malware detection system and method detects changes in host behavior indicative of malware execution. The system uses linear discriminant analysis (LDA) for feature extraction, multi-channel change-point detection algorithms to infer malware execution, and a data fusion center (DFC) to combine local decisions into a host-wide diagnosis. The malware detection system includes sensors that monitor the status of a host computer being monitored for malware, a feature extractor that extracts data from the sensors corresponding to predetermined features, local detectors that perform malware detection on each stream of feature data from the feature extractor independently, and a data fusion center that uses the decisions from the local detectors to infer whether the host computer is infected by malware.
Abstract:
A link adaptive orthogonal frequency-division multiplexed (OFDM) ultrasonic physical layer is provided that is capable of high data rate communication through metallic structures. The use of an adaptive OFDM subcarrier-based modulation technique mitigates the effects of severe frequency selective fading of the through-metal communication link and improves spectral efficiency by exploiting the slow-varying nature of the channel. To address the potential ill effects of peak-to-average power ratio (PAPR) and to make more efficient use of the power amplifiers in the system, the invention modifies and implements a symbol rotation and inversion-based PAPR reduction algorithm in the adaptive OFDM framework. This joint adaptive physical layer is capable of increasing data rates by roughly 220% in comparison to conventional narrowband techniques at average transmit powers of roughly 7 mW while constrained to a desired BER.
Abstract:
One aspect of the invention provides a computer-implemented method for tracking a plurality of spermatozoa. The method includes: identifying a coordinate for each of the plurality of spermatozoa in a plurality of video frames; and applying a nearest-neighbor joint probabilistic data association filter (NN-JPDAF) algorithm to associate the coordinates with one or a plurality of sperm tracks. Another aspect of the invention provides a non-transitory computer-readable medium containing program instructions executable by a processor. The computer-readable medium can include program instructions for performing a method as described herein. Another aspect of the invention provides a system including: a processor and a computer-readable medium including program instructions for performing a method as described herein.
Abstract:
A link adaptive orthogonal frequency-division multiplexed (OFDM) ultrasonic physical layer is provided that is capable of high data rate communication through metallic structures. The use of an adaptive OFDM subcarrier-based modulation technique mitigates the effects of severe frequency selective fading of the through-metal communication link and improves spectral efficiency by exploiting the slow-varying nature of the channel. To address the potential ill effects of peak-to-average power ratio (PAPR) and to make more efficient use of the power amplifiers in the system, the invention modifies and implements a symbol rotation and inversion-based PAPR reduction algorithm in the adaptive OFDM framework. This joint adaptive physical layer is capable of increasing data rates by roughly 220% in comparison to conventional narrowband techniques at average transmit powers of roughly 7 mW while constrained to a desired BER.