Abstract:
An adjustment method for adjusting a path of an electron beam passing through an electron beam device including at least one unit having at least one lens and at least one aligner electrode, and a detector configured to detect the electron beam, the method including: a step of measuring, by a coordinate measuring machine, an assembly tolerance for each of a plurality of the units constituting the electron beam device; a step of determining a shift amount of the electron beam at a position of the at least one of the lenses; a step of determining an electrode condition for each of a plurality of the aligner electrodes included in the units in a manner such that a shift amount of the electron beam is to be the determined shift amount; and a step of setting each of the aligner electrodes to the corresponding determined electrode condition.
Abstract:
An electron beam inspection device includes: a primary electron optical system that irradiates the surface of a sample with an electron beam; and a secondary electron optical system that gathers secondary electrons emitted from the sample and forms an image on the sensor surface of a detector. An electron image of the surface of the sample is obtained from a signal detected by the detector, and the sample is inspected. A cylindrical member that is formed with conductors stacked as an inner layer and an outer layer, and an insulator stacked as an intermediate layer is provided inside a lens tube into which the secondary electron optical system is incorporated. An electron orbital path is formed inside the cylindrical member, and the members constituting the secondary electron optical system are arranged outside the cylindrical member.
Abstract:
An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
Abstract:
A substrate is irradiated by primary electrons and secondary electrons generated from the substrate are detected by a detector. A reference die is placed on the stage to obtain a pattern matching template image including feature coordinates of the reference die. A pattern matching is performed with an arbitrary die in a row or column including the reference die using the template image to obtain feature coordinates of the arbitrary die. An angle of misalignment is calculated between the direction of the row or column including the reference die and one of the directions of movement of the substrate on the basis of the feature coordinates of the arbitrary die and those of the reference die. The stage is rotated to correct the angle of misalignment to conform the direction of the row or column including the reference die with the one of the directions of movement of the substrate.
Abstract:
A substrate is irradiated by primary electrons and secondary electrons generated from the substrate are detected by a detector. A reference die is placed on the stage to obtain a pattern matching template image including feature coordinates of the reference die. A pattern matching is performed with an arbitrary die in a row or column including the reference die using the template image to obtain feature coordinates of the arbitrary die. An angle of misalignment is calculated between the direction of the row or column including the reference die and one of the directions of movement of the substrate on the basis of the feature coordinates of the arbitrary die and those of the reference die. The stage is rotated to correct the angle of misalignment to conform the direction of the row or column including the reference die with the one of the directions of movement of the substrate.
Abstract:
An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
Abstract:
An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
Abstract:
An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage (100) on which a sample (200) is placed is disposed inside a vacuum chamber (112) that can be evacuated to vacuum, and a dust collecting electrode (122) is disposed to surround a periphery of the sample (200). The dust collecting electrode (122) is applied with a voltage having the same polarity as a voltage applied to the sample (200) and an absolute value that is the same or larger than an absolute value of the voltage. Thus, because dust or particles such as particles adhere to the dust collecting electrode (122), adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber containing the stage, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied. In addition, adhesion of dust or particles can be further reduced by disposing a gap control plate (124) having a through hole (124a) at the center above the sample (200) and the dust collecting electrode (122).
Abstract:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
Abstract:
Provided is an electron beam irradiation apparatus including: an aligner configured to perform an alignment of an electron beam by deflecting the electron beam; a deflector having a plurality of electrodes and configured to deflect the electron beam after passing through the aligner; and an adjuster configured to adjust deflection caused by the aligner, wherein the adjuster is configured to perform, on each of the plurality of electrodes, detecting an image of the electron beam by applying a test voltage to one of the plurality of electrodes and applying a reference voltage to the other electrodes, determine a position shift of the electron beam based on each position of the image of the electron beam corresponding to each electrode, and adjust deflection of the aligner so as to cancel the position shift of the electron beam.