Abstract:
A sensor element, a sensor arrangement, and a method for manufacturing a sensor element and a sensor arrangement are disclosed. In an embodiment, a sensor element includes a ceramic main body having at least one electrode arranged at the main body and having at least one contact piece for the electrical contacting of the electrode, wherein the contact piece is fastened to the electrode by welding or bonding.
Abstract:
A sensor element, a sensor arrangement, and a method for manufacturing a Sensor element are disclosed. In an embodiment, a sensor element includes a ceramic main body and at least one electrode arranged at the main body, wherein the electrode has at least one layer comprising nickel.
Abstract:
The invention relates to a temperature sensor system comprising a first ceramic housing part comprising a sleeve-shaped lower part with a first lower end having a first opening, and a second upper end having a second opening, and an upper part connected to the second upper end. The temperature sensor system further comprises a temperature probe element which is at least partially arranged in the lower part and which has a ceramic sensor element housing, a sensor element arranged in the sensor element housing, and electrical supply lines. The sensor element housing is at least partially arranged in the first opening. The ceramic sensor element housing has a higher thermal conductivity than the first ceramic housing part. Also disclosed is a method for producing a temperature sensor system.
Abstract:
A sensor element and a method for producing a sensor element are disclosed. In an embodiment the sensor element is configured to be secured on a printed circuit board by pressure sintering, wherein a structural form of the sensor element is designed such that an exposure to pressure of the sensor element during the pressure sintering is compensated.
Abstract:
A sensor element and a method for producing a sensor element are disclosed. In an embodiment a sensor element for temperature measurement includes a ceramic carrier and at least one NTC layer printed on the carrier, wherein the NTC layer covers at least part of a surface of the carrier, and wherein the sensor element is designed for wireless contacting.
Abstract:
A sensor element and a method for producing a sensor element are disclosed. In an embodiment a sensor element for temperature measurement includes a ceramic carrier and at least one NTC layer printed on the carrier, wherein the NTC layer covers at least part of a surface of the carrier, and wherein the sensor element is designed for wireless contacting.
Abstract:
The invention relates to a temperature probe comprising two first ceramic plates, a second ceramic plate arranged between the first ceramic plates, and two third ceramic plates. Each of the two first ceramic plates comprises an opening in each in which an NTC sensor element is arranged. An electrode is arranged between the second ceramic plate and each of the first ceramic plates. The first and the second ceramic plates are arranged between the two third ceramic plates. An electrode is arranged between each third ceramic plate and a first ceramic plate. Each electrode electrically contacts an NTC sensor element. Each NTC sensor element is enclosed by ceramic plates. The first, the second and the third ceramic plates and the NTC sensor elements are sintered to form a ceramic body. The invention further relates to a method for producing a temperature probe.
Abstract:
The invention relates to a temperature sensor system comprising a temperature probe element and a first ceramic housing part. The temperature probe element comprises a sensor element and electrical feed lines. The first ceramic housing part comprises a sleeve-shaped lower part with a closed lower end and an open upper end, and an upper part connected to the open upper end. The sensor element is arranged in the sleeve-shaped lower part. The upper part has recesses in which the electrical feed lines are partially arranged and guided. The lower part and the upper part form one piece. Also disclosed is a method for producing a temperature sensor system.
Abstract:
The invention relates to a temperature probe which comprises a functional ceramic probe element and a ceramic housing. The probe element is mounted in the ceramic housing so that at a face of the probe element has direct and form-fitting contact with the ceramic housing. The invention further relates to a method for producing a temperature probe.
Abstract:
A pressure sensor system having a pressure sensor chip is specified. The pressure sensor chip is mounted on a mounting receptacle of a ceramic housing body having a pressure feed guided to the pressure sensor chip. The housing body is three-dimensionally shaped and monolithically formed and is formed by a ceramic material having a coefficient of thermal expansion which deviates by less than 30% from the coefficient of thermal expansion of the pressure sensor chip in a temperature range of greater than or equal to −40° C. and less than or equal to 150° C.