Abstract:
A light-emitting element comprises a substrate; a light-emitting semiconductor stack on the substrate, the light-emitting semiconductor stack comprising a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a first electrode on the first semiconductor layer; a reflective layer formed on the light-emitting semiconductor stack; a protection layer formed on the light-emitting semiconductor stack; and a conductive contact layer formed on the light-emitting semiconductor stack, wherein each layer above the substrate comprises a side surface inclined to a top surface of the substrate.
Abstract:
Disclosed herein is a light-emitting device. The light-emitting device includes a substrate; a first light-emitting unit and a second light-emitting unit, separately formed on the substrate; a trench between the first and the second light-emitting units, including a bottom portion exposing the substrate; an insulating layer, comprising a first part formed on the first light-emitting unit or the second light-emitting unit, and a second part conformably formed on the trench covering the bottom portion and sidewalls of the first light-emitting unit and the second light-emitting unit; and an electrical connection, electrically connecting the first light-emitting unit and the second light-emitting unit, comprising a bridging portion formed on the second part of the insulating layer, and only covering a portion of the trench; and a joining portion, extending from the bridging portion and formed on the first part of the insulating layer; wherein the bridging portion is wider than the joining portion in a top view.
Abstract:
The present application provides a multi-dimensional light-emitting device electrically connected to a power supply system. The multi-dimensional light-emitting device comprises a substrate, a blue light-emitting diode array and one or more phosphor layers. The blue light-emitting diode array, disposed on the substrate, comprises a plurality of blue light-emitting diode chips which are electrically connected. The multi-dimensional light-emitting device comprises a central area and a plurality of peripheral areas, which are arranged around the central area. The phosphor layer covers the central area. When the power supply system provides a high voltage, the central area and the peripheral areas of the multi-dimensional light-emitting device provide a first light and a plurality of second lights, respectively. The first light and the second lights are blended into a mixed light.
Abstract:
A light-emitting element comprises a light-emitting semiconductor stack comprising a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a plurality of extensions formed on the first semiconductor layer; and a first conductive part and a second conductive part formed on the light-emitting semiconductor stack and respectively electrically connected to the first semiconductor layer and the second semiconductor layer, wherein one of the plurality of extensions is formed beyond a projected area of the second conductive part and not covered by the first conductive part.
Abstract:
A light-emitting element comprises: a light-emitting semiconductor stack comprising a first semiconductor layer; a second semiconductor layer on the first semiconductor layer; and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a first electrode on the first semiconductor layer; a first protection layer on the light-emitting semiconductor stack and comprising a first through hole; and a conductive contact layer on the first protection layer and electrically connected to the first electrode through the first through hole.
Abstract:
The application provides an optoelectronic device structure, comprising a semiconductor stack, comprising a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer; a first electrode electrically connecting with the first conductivity type semiconductor layer, and further comprising a first extension electrode; a second electrode electrically connecting with the second conductivity type semiconductor layer; and a plurality of electrical restraint contact areas between the semiconductor stack and the first extension electrode, wherein the plurality of electrical restraint contact areas is distributed in a variable interval.
Abstract:
Disclosed herein is a light-emitting device. The light-emitting device includes a substrate with a top surface; a first light-emitting structure unit and a second structure light-emitting unit disposed on the top surface, the first light-emitting structure unit and the second light-emitting structure unit being spaced apart from each other, wherein each of the first light-emitting structure unit and the second light-emitting structure unit includes a lower layer having a first conductivity and an upper layer having a second conductivity; a trench between the first light-emitting structure unit and the second light-emitting structure unit, including a bottom portion which is a part of the top surface; an isolation layer, disposed on the trench and covering the bottom portion; and an electrical connection, electrically connecting the first light-emitting structure unit and the second light-emitting structure unit; wherein the lower layer includes an inclined sidewall and the electrical connection contacts the inclined sidewall.
Abstract:
A light-emitting device includes a semiconductor stack including a first semiconductor layer, a second semiconductor layer formed on the first semiconductor layer, and an active layer formed therebetween, wherein the first semiconductor layer includes a surrounding exposed region not covered by the active layer, and the surrounding exposed region surrounds the active layer; a conductive layer formed on the second semiconductor layer, including a first conductive region extending toward and contacting the surrounding exposed region of the first semiconductor layer; an electrode layer formed on the first conductive region in the surrounding exposed region; an outside insulating layer covering a portion of the conductive layer and the electrode layer, and including a first opening exposing the other portion of the conductive layer; a bonding layer covering the outside insulating layer and electrically connecting to the other portion of the conductive layer through the first opening; and a conductive substrate, wherein the semiconductor stack is located on one side of the bonding layer, and the conductive substrate is located on the other side of the bonding layer.
Abstract:
A light-emitting device includes a growth substrate, a plurality of light-emitting diode units formed on the growth substrate and arranged in a closed loop, an electrode directly formed on the growth substrate, an electrical connection structure formed on the growth substrate and connecting the plurality of light-emitting diode units with the electrode, and a plurality of rectifying diodes connecting to respective nodes of the closed loop.