Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by introducing to a combustion chamber of the engine from 0.1 to 5% by volume of the gasoline used a lubricating oil as a formulated oil, said formulated oil having a composition comprising (i) a major amount of a lubricating oil base stock comprising at least 80% by weight of one branched ester having at least 15% of the total carbons in the form of methyl groups, and (ii) a minor amount of at least one ashless amine phosphate antiwear additive. Also provided is a lubricating engine oil for high compression spark ignition engines including (i) a major amount of a lubricating oil base stock comprising at least 80% by weight formula I below: esterified (per —OH basis) with 25 to 100% isobutyric acid and 0 to 75% 3,5,5-trimethylhexanoic acid, wherein R is a H, methyl, ethyl, isopropyl, or isobutyl, and (ii) a minor amount of at least one amine phosphate ashless antiwear additive.
Abstract:
Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
Abstract:
A lubricant composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine lubricated with a formulated oil. The formulated oil has a composition including at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A fuel composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine by using a fuel additive composition in a gasoline fuel composition. The fuel additive composition contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
Zn-promoted and/or Ga-promoted cracking catalysts, such as cracking catalysts comprising an MSE framework zeolite or an MFI framework zeolite can provide unexpectedly superior conversion of branched paraffins when used as part of a catalyst during reforming of a hydrocarbon fuel stream. The conversion and reforming of the hydrocarbon fuel stream can occur, for example, in an internal combustion engine. The conversion and reforming can allow for formation of higher octane compounds from the branched paraffins.
Abstract:
Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
Abstract:
Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
Abstract:
A power system comprises an engine configured to combust an air/fuel mixture and produce a flow of exhaust gas; an exhaust passageway fluidly connected to the engine to receive the flow of exhaust gas; an exhaust gas recirculation loop fluidly connecting the exhaust passageway to a fuel intake for the engine; a first conversion zone containing a fuel reforming catalyst located within the exhaust gas recirculation loop; and a second conversion zone located within the exhaust gas recirculation loop separate from and downstream of the first conversion zone stream, the second conversion zone containing a fuel cracking catalyst.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by introducing to a combustion chamber of the engine from 0.1 to 5% by volume of the gasoline used a lubricating oil as a formulated oil, said formulated oil having a composition comprising (i) a major amount of a lubricating oil base stock comprising at least 80% by weight of one branched ester having at least 15% of the total carbons in the form of methyl groups, and (ii) a minor amount of at least one ashless amine phosphate antiwear additive. Also provided is a lubricating engine oil for high compression spark ignition engines including (i) a major amount of a lubricating oil base stock comprising at least 80% by weight a trimethylol propane ester of 50:50 mixture of isobutyric acid and 3,5,5-trimethylhexanoic acid and (ii) a minor amount of at least one amine phosphate ashless antiwear additive.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains (i) a lubricating oil base stock comprising at least one branched ester having at least about 15% of the total carbons in the form of methyl groups, and (ii) at least one ashless antiwear additive selected from a phosphorus-containing ashless antiwear additive, a sulfur-containing ashless antiwear additive, and a phosphorus/sulfur-containing ashless antiwear additive. A lubricating engine oil having a composition that contains (i) a lubricating oil base stock comprising at least one branched ester having at least about 15% of the total carbons in the form of methyl groups, and (ii) at least one ashless antiwear additive selected from a phosphorus-containing ashless antiwear additive, a sulfur-containing ashless antiwear additive, and a phosphorus/sulfur-containing ashless antiwear additive. The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
A lubricant composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine lubricated with a formulated oil. The formulated oil has a composition including at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A fuel composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine by using a fuel additive composition in a gasoline fuel composition. The fuel additive composition contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.