Abstract:
Disclosed are zeolitic imidazolate framework (ZIF) compositions in which at least a portion of the ligands in its shell have been exchanged with other ligands, and methods of making such shell-ligand-exchanged ZIFs. Also disclosed is the use of such shell-ligand-exchanged ZIFs in hydrocarbon separation processes.
Abstract:
A novel metal organic framework, EMM-33, is described having the structure of UiO-67 and comprising bisphosphonate linking ligands. EMM-33 has acid activity and is useful as a catalyst in olefin isomerization. Also disclosed is a process of making metal organic frameworks, such as EMM-33, by heterogeneous ligand exchange, in which linking ligands having a first bonding functionality in a host metal organic framework are exchanged with linking ligands having a second different bonding functionality in the framework.
Abstract:
A process is disclosed for producing small crystal, high surface area crystalline materials having the MFI and/or MEL framework-type, designated as EMM-30, using as a structure directing agent tetrabutylammonium cations and/or tetrabutylphosphonium cations, or 1,5-bis(N-tributylammonium)pentane dications, and/or 1,6-bis(N-tributylammonium)hexane dications. The compositions made according to that process, as well as the various dication compositions themselves, are also disclosed.
Abstract:
Catalyst compositions with improved alkylation activity and corresponding methods for making such catalyst compositions are provided. The catalyst(s) correspond to solid acid catalysts formed by exposing a catalyst precursor with a zeolitic framework structure to a molten metal salt that includes fluorine, such as a molten metal fluoride. The resulting fluorinated solid acid catalysts can have improved alkylation activity while having a reduced or minimized amount of structural change due to the exposure to the molten metal fluoride. This is in contrast to fluorinated solid acid catalysts that are exposed to higher severity forms of fluorination, such as exposure to ammonium fluoride or HF. SnF2 is an example of a suitable molten metal fluoride.
Abstract:
An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials. This disclosure further relates in part to the selective removal of CO2 and/or other acid gases from a gaseous stream containing one or more of these gases using the adsorption-desorption materials.
Abstract:
A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.
Abstract:
Organosilica materials made from monomers including at least a source of silica that is reactive to polymerize, optionally in combination with at least one additional cyclic monomer. Methods for making such organosilica materials are also described herein.
Abstract:
A molecular sieve having the framework structure of ZSM-5 is described comprising crystals having an external surface area in excess of 100 m2/g (as determined by the t-plot method for nitrogen physisorption) and a unique X-ray diffraction pattern.
Abstract:
Provided herein are compositions and methods for use of an organosilica material comprising a copolymer of at least one monomer of Formula [R1R2SiCH2]3 (I), wherein, R1 represents a C1-C4 alkoxy group; and R2 is a C1-C4 alkoxy group or a C1-C4 alkyl group; and at least one other monomer of Formula [(Z1O)xZ23-xSi—Z3—SZ4] (II), wherein, Z1 represents a hydrolysable functional group; Z2 represents a C1-C10 alkyl or aryl group; Z3 represents a C2-C11 cyclic or linear hydrocarbon; Z4 is either H or O3H; and x represents any one of integers 1, 2, and 3. The composition may be used as a support material to covalently attach transition metal cations, as a sorbent for olefin/paraffin separations, as a catalyst support for hydrogenation reactions, as a precursor for highly dispersed metal nanoparticles, or as a polar sorbent for crude feeds.
Abstract:
A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.