Abstract:
An electrical connector, for receiving an electrical card, includes an insulative housing, a plurality of conductive contacts retained in the insulative housing and a metallic shell covering the insulative housing. The metallic cover and the insulative housing define a receiving cavity. The shell has a top plate, the top plate is formed with a plurality of openings, a plurality of resisting pieces bent downwardly from front edges of the openings, and a plurality of gaps defined between each two adjacent resisting pieces. Each contact has a conductive portion extending into the receiving cavity, and the conductive portions and the gaps of the top plate are alternatively disposed.
Abstract:
A power adapter comprises a cover and a printed circuit board module received in the cover. The cover has a base and an upper cover covering the base, the base has a bottom wall and a plurality of side walls surrounding the bottom wall, the bottom wall and the side walls form a receiving space for receiving the printed circuit board module. The cover has a plurality of latching members at the top of the side wall, the latching members are on both ends of the cover, the latching members are defined above the upper cover and extend to each other. The side walls comprise a first side wall with a rotatablely movable block, the latching member is defined at the top of the movable block, the latching member moves outward with the movable block rotating.
Abstract:
An electrical connector for mounting to a printed circuit board for mating with a plug connector, includes an insulative housing and the upper and lower contacts on the housing, each contact including a contacting section, the contacts including grounding contacts each having a free end of the contacting section, and a mounting leg mounted to the corresponding grounding region of the printed circuit board wherein the free ends of the corresponding paired upper grounding contact and lower grounding contact either abut against each other or against a metallic shielding plate embedded within the mating tongue to form a parallel relation between the paired upper grounding contact and lower grounding contact.
Abstract:
A receptacle connector for mating with the plug connector, includes a terminal unit, a metallic shield and a mating cavity surrounded by the metallic shield. The terminal unit includes a terminal module having a first insulator with a plurality of first contacts embedded therein via a first stage insert-molding process, a second insulator with a plurality of second contacts embedded therein via the similar first stage insert-molding process. The first insulator includes a first front insulator and a first rear insulator spaced from each other while linked together by the corresponding first contacts; the second insulator includes a second front insulator and a second rear insulator spaced from each other while linked together by the corresponding second contacts.
Abstract:
An electrical connector includes a contact module comprising two rows of contacts retained therein and a shielding plate, the contacts module defining a main base, a middle step and a mating tongue and, the middle step being located between the main base and the mating tongue in a mating direction, the contacts comprising contacting portions exposed on opposite surfaces of the mating tongue; a metallic shell retained on the main base and surrounding the mating tongue and the middle step to define a mating cavity thereamong and a one piece grounding collar. The grounding collar includes a collar portion fitly surrounding the middle step and a grounding plate extending from the collar portion to mechanically and electrically connect with the metallic shell.
Abstract:
An electrical connector includes a first terminal module, a second terminal module, a shielding shell and a metallic shielding plate. The first terminal module includes a first mating tongue and first terminals insert molded thereamong. The first mating tongue has a first mating face on which the first terminals are exposed. The first terminals have first connecting sections extending in a vertical direction. The second terminal module includes a second mating tongue and second terminals insert molded thereamong. The second mating tongue has a second mating face directly facing to the first mating face and a third mating face. The second terminals are disposed in the second and third mating faces and have second connecting sections extending in the vertical direction. The metallic shielding plate is disposed between the first and second connecting sections and has a plurality of hooked shrapnels elastically contacting with the shielding shell.
Abstract:
An electrical connector includes an insulating housing, first terminals, second terminals and a shielding shell. The insulating housing has a base portion and a mating portion, and the base portion has a mounting surface. The first terminals have a pair of differential signal terminals, a power terminal, and a grounding terminal, and the second terminals having the same type of terminals. The power terminal and the grounding terminal are disposed at two opposite sides of the pair of differential signal terminals, respectively. The first terminals and the second terminals have connecting legs extending out of the mounting face. The connecting legs of the power terminals and the grounding terminals are disposed at the middle area of the mounting surface, and the connecting legs of the differential signal terminals are respectively disposed at two opposite sides of the connecting legs of the power terminals and the grounding terminals.
Abstract:
A card connector includes an insulative housing, a plurality of contacts received in the insulative housing and a metallic cover covering the insulative housing. The contact includes a retaining portion, an extending portion horizontally and forwardly extending from the retaining portion, a connecting portion downwardly and forwardly aslant extending from the extending portion, a floating portion downwardly from the connecting portion and a contacting portion further downwardly extending from the floating portion. There are two bending points on linking portions of the connecting portion connecting with the floating portion and the extending portion, respectively. By such arrangement, when the electrical card is inserted, the contact can rotate about the two bending points in turn, that can improve an elasticity of the contact.
Abstract:
An electrical receptacle connector includes a terminal module assembly and a grounding collar thereon. The terminal module assembly includes the front mating tongue, the rear body, and the step structure therebetween, and the corresponding contacts. The contacts are secured to the body with contacting sections exposed upon the mating tongue. The grounding collar includes the grounding regions located on two opposite upper and lower surfaces of the step structure. The front edge area of the grounding region adjacent to the front edge area, forms a notch so as to leave a space to allow the spring finger of the corresponding interior grounding plate of the plug connector to first slide upon the step structure and successively contact the grounding region of the grounding collar of the receptacle connector.
Abstract:
An electrical connector comprises an insulative housing with a plurality of ports, a plurality of contacts received in the insulative housing, a rear seat assembled to a rear side of the insulative housing and a metal shell covering the insulative housing. The insulative housing has a plurality of slots recessed from a rear surface thereof for retaining the contacts. The contact has a linking portion positioned in the rear sear and a mating portion bent from the linking portion and exposed in the port. The mating portions of the contacts in a same port are located in different heights, and at least one of the mating potions is inclined, so as to provide an inclined force to an inserted mating connector thereby reducing a pressing force to the inserted plug during engaging.