Abstract:
A fiber clamp mechanism of an optical fiber fusion splicer includes a fiber receiving base and a clamp tip attached to a tip of a stay, in which the fiber receiving base is formed to have a substantially L-shaped cross section in which a thin-walled projecting piece is provided to project upward, and a V-groove with a thin wall holding an optical fiber is formed on an upper surface of the projecting piece, the clamp tip is formed to have a substantially L-shaped cross section in which a projecting piece having a V-shaped pressing portion with a thin wall formed along the V-groove projects downward and is fixed to the tip of the stay, and a tip of the V-shaped pressing portion is formed to have an R-shape along an axial direction of the optical fiber.
Abstract:
A thermosetting solution composition composed of a biphenyltetracarboxylic acid compound containing a partial lower aliphatic alkyl ester of 2,3,3′,4′-biphenyltetracarboxylic acid and/or a partial lower aliphatic alkyl ester of 2,2′,3,3′-biphenyltetracarboxylic acid, an aromatic diamine compound in a molar amount larger than a molar amount of the biphenyltetracarboxylic acid compound, a partial lower aliphatic aryl ester of 4-(2-phenylethynyl)phthalic acid compound in a molar amount as much as 1.8-2.2 times a molar amount corresponding to a difference between the molar amount of the aromatic diamine compound and the molar amount of the biphenyltetracarboxylic acid compound, and an organic solvent composed of a lower aliphatic alcohol is of value for manufacture of a prepreg.
Abstract:
A polyimide/metal composite sheet is composed of a metal film and a polyimide film polyimide which is prepared by reaction of asymmetric biphenyltetracarboxylic acid dianhydride and 1,3-bis(4-aminophenoxy)benzene. The polyimide film is firmly bonded to and hardly peelable from the metal film. The polyimide film can contain a solid filler.
Abstract:
A steel sheet for containers that has a hardness of 500 MPa or more and superior workability and a method for producing the steel sheet are provided. A steel containing, in percent by mass, 0.01% to 0.05% carbon, 0.04% or less silicon, 0.1% to 1.2% manganese, 0.10% or less sulfur, 0.001% to 0.100% aluminum, 0.10% or less nitrogen, and 0.0020% to 0.100% phosphorus, the balance being iron and incidental impurities, is subjected to hot rolling at a finishing temperature of (Ar3 transformation temperatute−30)° C. or more and a coiling temperature of 400° C. to 750° C., is subjected to pickling and cold rolling, is subjected to continuous annealing including overaging treatment, and is subjected to second cold rolling at a reduction rate of 20% to 50%, thus providing a high-strength steel sheet for containers that has a tensile strength of 500 MPa or more and a proof stress difference between width and rolling directions of 20 MPa or less.
Abstract:
An alignment tool includes a holding member designed to hold parallel optical fibers. A first movable member is coupled to the holding member for relative movement. The first movable member is designed to hold one of the optical fibers. A second movable member is located for a movement relative to the first movable member. The second movable member is designed to hold another one of the optical fibers. The second movable member is capable of moving relative to the first movable member. The interval can be changed between the optical fibers held on the first and second movable members in response to the relative movement of the second movable member. In this case, the predetermined interval can be kept between the optical fibers on the holding member.
Abstract:
A polyimide powder for an antistatic polyimide molded product is disclosed. The polyimide powder comprises a polyimide-powder prepared from an aromatic tetracarboxylic acid component and a diamine component, and a conductive carbon black having a DBP oil absorption of 300 ml/100 g or more; wherein the amount of the conductive carbon black is within a range of 0.75 wt % to 5 wt % relative to the polyimide-powder. A polyimide molded product with sufficient antistatic property can be formed by molding the above polyimide powder.
Abstract:
A polyimide powder for an antistatic polyimide molded product is disclosed. The polyimide powder comprises a polyimide-powder prepared from an aromatic tetracarboxylic acid component and a diamine component, and a conductive carbon black having a DBP oil absorption of 300 ml/100 g or more; wherein the amount of the conductive carbon black is within a range of 0.75 wt % to 5 wt % relative to the polyimide-powder. A polyimide molded product with sufficient antistatic property can be formed by molding the above polyimide powder.
Abstract:
A thermosetting solution composition composed of a biphenyltetracarboxylic acid compound containing a partial lower aliphatic alkyl ester of 2,3,3′,4′-biphenyltetracarboxylic acid and/or a partial lower aliphatic alkyl ester of 2,2′,3,3′-biphenyltetracarboxylic acid, an aromatic diamine compound in a molar amount larger than a molar amount of the biphenyltetracarboxylic acid compound, a partial lower aliphatic alkyl ester of 4-(2-phenylethynyl)phthalic acid compound in a molar amount as much as 1.8-2.2 times a molar amount corresponding to a difference between the molar amount of the aromatic diamine compound and the molar amount of the biphenyltetracarboxylic acid compound, and an organic solvent composed of a lower aliphatic alcohol is of value for manufacture of a prepreg.
Abstract:
A polyimide powder for an antistatic polyimide molded product is disclosed. The polyimide powder comprises a polyimide-powder prepared from an aromatic tetracarboxylic acid component and a diamine component, and a conductive carbon black having a DBP oil absorption of 300 ml/100 g or more; wherein the amount of the conductive carbon black is within a range of 0.75 wt % to 5 wt % relative to the polyimide-powder. A polyimide molded product with sufficient antistatic property can be formed by molding the above polyimide powder.
Abstract:
A water-soluble polyimide precursor, which can be suitably applied for aromatic polyimides and exhibits a low reduction in heat resistance and mechanical properties, an aqueous solution of the polyimide precursor and a polyimide obtained from the precursor. A heat-resistant fiber impregnated material and an impregnated sheet-like material are prepared by using the precursor and a laminate is prepared by employing the precursor.