Abstract:
A storage module is configured to store data segments, such as error-correcting code (ECC) codewords, within an array comprising a plurality of columns. The ECC codewords may comprise ECC codeword symbols. The ECC symbols of a data segment may be arranged in a horizontal arrangement, a vertical arrangement, a hybrid channel arrangement, and/or vertical stripe arrangement within the array. The individual ECC symbols may be stored within respective columns of the array (e.g., may not cross column boundaries). Data of an unavailable ECC symbol may be reconstructed by use of other ECC symbols stored on other columns of the array.
Abstract:
Apparatuses, systems, and methods are disclosed to manage non-volatile media. A method includes determining a configuration parameter for a set of storage cells of a non-volatile recording medium. A method includes reading data from a set of storage cells using a determined configuration parameter. A method includes adjusting a configuration parameter based on read data.
Abstract:
Apparatuses, systems, and methods are disclosed for reconfiguring an array of storage elements. A storage element error module is configured to determine that one or more storage elements in an array of storage elements are in error. An array of storage elements stores a first ECC block and first parity data generated from the first ECC block. A data reconfiguration module is configured to generate a second ECC block comprising at least a portion of data of a first ECC block. A new configuration storage module is configured to store a second ECC block and associated second parity data on fewer storage elements than a number of storage elements in an array.
Abstract:
Apparatuses, systems, and methods are disclosed to manage non-volatile media. A method includes determining a configuration parameter for a set of storage cells of a non-volatile recording medium. A method includes reading data from a set of storage cells using a determined configuration parameter. A method includes adjusting a configuration parameter based on read data.
Abstract:
An apparatus and system are disclosed for a storage area network (“SAN”). In one embodiment, a computer system includes an internal storage device and an internal storage controller. In this embodiment, the internal storage controller is configured to implement a SAN that includes at least the internal storage device and a storage device external to the computer system. In this embodiment, the internal storage controller is further configured to service a storage request received from a client that involves data stored by the internal storage device. In this embodiment, the internal storage controller is configured to communicate with the external storage device via a network.
Abstract:
Apparatuses, systems, methods, and computer program products are disclosed for configuring storage cells. A method includes detecting a shift in a read voltage level past a read voltage threshold for a set of memory cells of a non-volatile memory medium. A method includes adjusting a read voltage threshold for the set of memory cells by an amount based at least in part on one or more characteristics of the set of memory cells in response to the shift in the read voltage level. A method includes configuring the set of memory cells to use the adjusted read voltage threshold.
Abstract:
A storage module is configured to store data segments, such as error-correcting code (ECC) codewords, within an array comprising two or more solid-state storage elements. The data segments may be arranged in a horizontal arrangement, a vertical arrangement, a hybrid channel arrangement, and/or vertical stripe arrangement within the array. The data arrangement may determine input/output performance characteristics. An optimal adaptive data storage configuration may be based on read and/or write patterns of storage clients, read time, stream time, and so on. Data of failed storage elements may be reconstructed by use of parity data and/or other ECC codewords stored within the array.
Abstract:
A memory device includes a memory array with a plurality of memory elements. Each memory element is configured to store data. The device includes an input/output (I/O) buffer coupled to the memory array. The I/O buffer is configured to receive data from an I/O interface of a memory device controller and write the data to the memory array. The device includes a memory control manager coupled to the memory array. The memory control manager is configured to pause a program operation to the memory array in response to receiving a pause command. The memory control manager is also configured to resume the program operation in response to receiving a resume command.
Abstract:
Apparatuses, systems, and methods are disclosed for reconfiguring an array of storage elements. A storage element error module is configured to determine that one or more storage elements in an array of storage elements are in error. An array of storage elements stores a first ECC block and first parity data generated from the first ECC block. A data reconfiguration module is configured to generate a second ECC block comprising at least a portion of data of a first ECC block. A new configuration storage module is configured to store a second ECC block and associated second parity data on fewer storage elements than a number of storage elements in an array.
Abstract:
Apparatuses, systems, methods, and computer program products are disclosed for configuring storage cells. A method includes determining a usage history for a set of storage cells of a solid-state storage medium. A method includes adjusting a voltage threshold for a set of storage cells by an amount based at least in part on a usage history. A method includes configuring a set of storage cells to use an adjusted voltage threshold.