Abstract:
A method implemented by a middlebox comprising registering a customer premises equipment (CPE) in the middlebox, wherein the CPE is coupled to the middlebox via an electrical line, and facilitating registration of the CPE in a central office (CO) equipment coupled to the middlebox.
Abstract:
An optical receiver comprises an optical port configured to receive an encoded optical signal, and a demodulation block indirectly coupled to the port and comprising a multiplexer, wherein the multiplexer is configured to receive an encoded electrical signal, wherein the encoded electrical signal is associated with the encoded optical signal, and wherein the encoded electrical signal is encoded using a code division multiple access (CDMA) scheme, receive a code associated with the scheme, perform a dot multiplication of the encoded electrical signal and the code, and generate a differential voltage based on the dot multiplication.
Abstract:
A method implemented by a middlebox comprising registering a customer premises equipment (CPE) in the middlebox, wherein the CPE is coupled to the middlebox via an electrical line, and facilitating registration of the CPE in a central office (CO) equipment coupled to the middlebox.
Abstract:
An apparatus comprising a processor configured to obtain one or more plant conditions regarding at least one of a plurality of customer premises equipment (CPEs) remotely coupled to the apparatus via electrical lines, and divide the plurality of coupled CPEs into a number of profile groups based on the one or more plant conditions, wherein each profile group comprises at least one CPE and supports one or more modulation orders.
Abstract:
An apparatus for interconnecting a fiber-optic network and a coax network comprising a coax line terminal (CLT) configured to couple to an optical line terminal (OLT) at the fiber-optic network and a plurality of coax network units (CNUs) at the coax network and to cache data received from the CNUs and forward the cached data to the OLT upon receiving a message from the OLT that assigns a transmission cycle for a specified CNU, wherein the CLT forwards the cached data to the OLT upon receiving the message regardless of whether the cached data corresponds to the specified CNU.
Abstract:
An optical line terminal (OLT) comprising an optical transmitter, and an optical port coupled to the optical transmitter, wherein the optical port is configured to couple to a hybrid fiber coaxial (HFC) node via an optical fiber, and wherein the optical transmitter is configured to transmit analog signals to the HFC node via the optical fiber. Also included is a coaxial line terminal (CLT) comprising an electrical transmitter, and an electrical port coupled to the electrical transmitter, wherein the electrical port is configured to couple to a coaxial network unit (CNU) via an electrical cable, and wherein the electrical transmitter is configured to transmit radio frequency (RF) signals to the CNU via the electrical cable.
Abstract:
A method implemented by a middlebox comprising registering a customer premises equipment (CPE) in the middlebox, wherein the CPE is coupled to the middlebox via an electrical line, and facilitating registration of the CPE in a central office (CO) equipment coupled to the middlebox.
Abstract:
A method of determining a round trip delay time in a network comprising receiving a gate message allocating a transmission time window; retrieving a first timestamp from the gate message; setting a first clock to the time corresponding to the first timestamp, and wherein the first clock runs synchronously with a second clock recovered from a received data stream; sending upstream, after a time interval comprising a grant start time included in the transmission time window offset by a random delay time, a registration request message, wherein the registration request message includes a second timestamp obtained from the first clock; and determining a round trip delay (RTT) from a time the registration request message is received and the second timestamp.
Abstract:
A method of allocating upstream bandwidth on a network comprising mapping an integer portion of a value obtained from a grant start time into a symbol number of a data frame on a coaxial segment of the network, wherein the value comprises the grant start time in units of a length of a data frame in the coaxial segment of a network, and wherein the length of the data frame comprises a preselected number of units of time defined in an optical segment of a network; mapping a fractional portion of the value obtained from the grant start time into a subcarrier number of the data frame; and mapping a grant length into a number subcarriers of the data frame.
Abstract:
An apparatus for interconnecting a fiber-optic network and a coax network comprising a coax line terminal (CLT) configured to couple to an optical line terminal (OLT) at the fiber-optic network and a plurality of coax network units (CNUs) at the coax network and to cache data received from the CNUs and forward the cached data to the OLT upon receiving a message from the OLT that assigns a transmission cycle for a specified CNU, wherein the CLT forwards the cached data to the OLT upon receiving the message regardless of whether the cached data corresponds to the specified CNU.