Abstract:
A method includes receiving, by a database system, a query statement and forming a runtime plan tree in accordance with the query statement. The method also includes traversing the runtime plan tree including determining whether a function node of the runtime plan tree is qualified for just-in-time (JIT) compilation. Additionally, the method includes, upon determining that the function node is a qualified for JIT compilation producing a string key in accordance with a function of the function node and determining whether a compiled object corresponding to the string key is stored in a compiled object cache.
Abstract:
A massively parallel processing shared nothing relational database management system includes a plurality of storages assigned to a plurality of compute nodes. The system comprises a non-transitory memory having instructions and one or more processors in communication with the memory. The one or more processors execute the instructions to store a set of data in a first set of storages in the plurality of storages. The first set of data is hashed into a repartitioned set of data. The first set of storages is reassigned to a second set of compute nodes in the plurality of compute nodes. The repartitioned set of data is distributed to the second set of compute nodes and a database operation is performed on the repartitioned set of data by the second set of compute nodes.
Abstract:
A method includes receiving, by a database system, a query statement and forming a runtime plan tree in accordance with the query statement. The method also includes traversing the runtime plan tree including determining whether a function node of the runtime plan tree is qualified for just-in-time (JIT) compilation. Additionally, the method includes, upon determining that the function node is a qualified for JIT compilation producing a string key in accordance with a function of the function node and determining whether a compiled object corresponding to the string key is stored in a compiled object cache.
Abstract:
The disclosure relates to technology for query compilation in a database management system. A first execution time of code for at least one database query without applying a code generation method is estimated and in response to receiving the at least one database query, and for one or more code generation methods, a compilation cost and a second execution time of the code as modified by the code generation methods is estimated. A cost savings for each of the one or more code generation methods is calculated, where the cost savings is calculated as the first execution time less the second execution time of the code generation method, less the compilation cost of the code generation method. One of the code generation methods or the no code generation method with the highest cost savings is then selected.
Abstract:
A system and method of caching and parameterizing intermediate representation code includes receiving, by a database, a query, parsing, by the database, the query to obtain a plan tree comprising a plurality of plan nodes arranged in hierarchical order descending from a top plan node, generating, by the database, node intermediate representations (IRs) for the plan nodes, executing, by the database, a first query using the node IRs, and reusing, by the database, the node IRs to execute subsequent queries.
Abstract:
A massively parallel processing shared nothing relational database management system includes a plurality of storages assigned to a plurality of compute nodes. The system comprises a non-transitory memory having instructions and one or more processors in communication with the memory. The one or more processors execute the instructions to store a set of data in a first set of storages in the plurality of storages. The first set of data is hashed into a repartitioned set of data. The first set of storages is reassigned to a second set of compute nodes in the plurality of compute nodes. The repartitioned set of data is distributed to the second set of compute nodes and a database operation is performed on the repartitioned set of data by the second set of compute nodes.
Abstract:
A system and method of caching and parameterizing intermediate representation code includes receiving, by a database, a query, parsing, by the database, the query to obtain a plan tree comprising a plurality of plan nodes arranged in hierarchical order descending from a top plan node, generating, by the database, node intermediate representations (IRs) for the plan nodes, executing, by the database, a first query using the node IRs, and reusing, by the database, the node IRs to execute subsequent queries.
Abstract:
Embodiments are provided herein for using parameterized Intermediate Representation (IR) for just-in-time (JIT) compilation in database query execution engines. In an embodiment, a method supporting query JIT compilation and execution in a database management system includes identifying a central processing unit (CPU) intensive function in a query, and identifying, in the CPU intensive function, one or more parameters. The one or more parameters represent variables with values changeable at different query instances. The CPU intensive function tis compiled to a parameterized IR including the one or more parameters. The parameterized IR of the CPU intensive function is saved in a catalog of parameterized IRs.