Abstract:
A laser system including: A. a laser apparatus configured to output a pulse laser beam; B. an optical pulse stretcher including a delay optical path for expanding a pulse width of the pulse laser beam; and C. a phase optical element included in the delay optical path and having a function of spatially and randomly shifting a phase of the pulse laser beam. The phase optical element includes a plurality of types of cells providing different amounts of phase shift to the pulse laser beam and arranged irregularly in any direction.
Abstract:
There is provided a laser system that may include a Raman cell, a pumping light generator, and a Raman cell laser unit. The pumping light generator may include one or more optical parametric amplifiers (OPAs), and may be configured to output first Raman-cell pumping light and second Raman-cell pumping light to the Raman cell. The Raman cell laser unit may be configured to output probing light as a target of wavelength conversion to the Raman cell.
Abstract:
A laser system may include: a master oscillator configured to output pulsed laser light; an amplification device for amplifying the pulsed laser light from the master oscillator; a first timing detector configured to detect a first timing at which the master oscillator outputs the pulsed laser light; a second timing detector configured to detect a second timing at which the amplification device discharges; and a controller configured to, based on results of detection by the first timing detector and the second timing detector, control at least one of the first timing and the second timing so that the amplification device discharges when the pulsed laser light passes through a discharge space of the amplification device.
Abstract:
A laser system including: A. a laser apparatus configured to output a pulse laser beam; B. an optical pulse stretcher including a delay optical path for expanding a pulse width of the pulse laser beam; and C. a phase optical element included in the delay optical path and having a function of spatially and randomly shifting a phase of the pulse laser beam. The phase optical element includes a plurality of types of cells providing different amounts of phase shift to the pulse laser beam and arranged irregularly in any direction.
Abstract:
A solid-state laser system may include first and second solid-state laser units, a wavelength conversion system, an optical shutter, and a controller. The first solid-state laser unit and the second solid-state laser unit may output first pulsed laser light with a first wavelength and second pulsed laser light with a second wavelength, respectively. The controller may perform first control and second control. The first control may cause the first and second pulsed laser light to enter the wavelength conversion system at a substantially coincidental timing, thereby causing the wavelength conversion system to output third pulsed laser light with a third wavelength converted from the first wavelength and the second wavelength, and the second control may prevent the first and second pulsed laser light from entering the wavelength conversion system at the coincidental timing, thereby preventing the wavelength conversion system from outputting the third pulsed laser light.
Abstract:
A solid-state laser apparatus may include: a master oscillator configured to output laser light having at least one longitudinal mode, the master oscillator being capable of changing the spectral linewidth of the laser light output therefrom; at least one amplifier located downstream of the master oscillator on an optical path; a wavelength converter located downstream of the amplifier on the optical path; a detector configured to detect the spectrum of the laser light; and a controller configured to control the spectral linewidth of the laser light output from the master oscillator based on a detection result of the detector.
Abstract:
A laser apparatus may include an optical resonator, a laser chamber, an optical loss adjustment mechanism, and a spectral line width adjustment mechanism. The optical resonator includes a mirror configured to reflect a part of light and a grating. The laser chamber is provided in the optical resonator and contains a laser gain medium, configured to emit a laser beam. The optical loss adjustment mechanism is provided in the optical resonator and configured to adjust an optical loss of the laser beam. The spectral line width adjustment mechanism is provided in the optical resonator and configured to adjust a spectral line width of the laser beam.
Abstract:
An exposure apparatus may include a laser light source capable of varying a wavelength of a laser beam that is emitted from the laser light source, a mask on which a pattern is formed, the pattern being configured to generate diffracted light by being irradiated with the laser beam, and a controller configured to control, in accordance with a distance between the mask and a substrate, the wavelength of the laser beam that is emitted from the laser light source, wherein the mask is irradiated with the laser beam emitted from the laser light source to perform proximity exposure on a surface of the substrate.
Abstract:
A laser system may include: a master oscillator configured to output pulsed laser light; an amplification device for amplifying the pulsed laser light from the master oscillator; a first timing detector configured to detect a first timing at which the master oscillator outputs the pulsed laser light; a second timing detector configured to detect a second timing at which the amplification device discharges; and a controller configured to, based on results of detection by the first timing detector and the second timing detector, control at least one of the first timing and the second timing so that the amplification device discharges when the pulsed laser light passes through a discharge space of the amplification device.
Abstract:
A wavelength converter may include a non-linear optical crystal, and an optical member bonded to a region of a contact surface of the non-linear optical crystal, located a predetermined distance or more on an inner side from an outer periphery of the contact surface. The wavelength converter may receive laser light and stably output light having a wavelength different from that of the laser light.