Abstract:
A method is disclosed for forming a semiconductor device. A first opening is formed for an STI on a semiconductor substrate and a first process is performed to deposit first oxide into the first opening. A second opening is formed to remove a portion of the first oxide from the first opening and second process(es) is/are performed to deposit second oxide into the second opening and over a remaining portion of the first oxide. A portion of the semiconductor device is formed over a portion of a surface of the second oxide. A semiconductor device includes an STI including a first oxide formed in a lower portion of a trench of the STI and a second oxide formed in an upper portion of the trench and above the first oxide. The semiconductor device includes a portion of the semiconductor device formed over a portion of the second oxide.
Abstract:
In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
Abstract:
Techniques for fabricating passive devices in an extremely-thin silicon-on-insulator (ETSOI) wafer are provided. In one aspect, a method for fabricating one or more passive devices in an ETSOI wafer is provided. The method includes the following steps. The ETSOI wafer having a substrate and an ETSOI layer separated from the substrate by a buried oxide (BOX) is provided. The ETSOI layer is coated with a protective layer. At least one trench is formed that extends through the protective layer, the ETSOI layer and the BOX, and wherein a portion of the substrate is exposed within the trench. Spacers are formed lining sidewalls of the trench. Epitaxial silicon templated from the substrate is grown in the trench. The protective layer is removed from the ETSOI layer. The passive devices are formed in the epitaxial silicon.
Abstract:
Transistors with self-aligned source/drain regions and methods for making the same. The methods include forming a gate structure embedded in a recess in a substrate; removing substrate material around the gate structure to create self-aligned source and drain recesses; forming a channel layer over the gate structure and the source and drain recesses; and forming source and drain contacts in the source and drain recesses. The source and drain contacts extend above the channel layer.