Abstract:
One illustrative embodiment involves forming a plurality of trenches in a substrate so as to define a fin, forming a first oxidation-blocking layer of insulating material in the trenches so as to cover a portion, but not all, of the sidewalls of the lower portion of the fin, forming a second layer of insulating material above the first oxidation-blocking layer of insulating material, and performing a thermal anneal process to convert part, but not all, of the lower portion of the fin positioned above the first oxidation-blocking layer of insulating material into an oxide fin isolation region positioned under the fin.
Abstract:
Forming a plurality of initial trenches that extend through a layer of silicon-germanium and into a substrate to define an initial fin structure comprised of a portion of the layer of germanium-containing material and a first portion of the substrate, forming sidewall spacers adjacent the initial fin structure, performing an etching process to extend the initial depth of the initial trenches, thereby forming a plurality of final trenches having a final depth that is greater than the initial depth and defining a second portion of the substrate positioned under the first portion of the substrate, forming a layer of insulating material over-filling the final trenches and performing a thermal anneal process to convert at least a portion of the first or second portions of the substrate into a silicon dioxide isolation material that extends laterally under an entire width of the portion of the germanium-containing material.
Abstract:
Forming a plurality of initial trenches that extend through a layer of silicon-germanium and into a substrate to define an initial fin structure comprised of a portion of the layer of germanium-containing material and a first portion of the substrate, forming sidewall spacers adjacent the initial fin structure, performing an etching process to extend the initial depth of the initial trenches, thereby forming a plurality of final trenches having a final depth that is greater than the initial depth and defining a second portion of the substrate positioned under the first portion of the substrate, forming a layer of insulating material over-filling the final trenches and performing a thermal anneal process to convert at least a portion of the first or second portions of the substrate into a silicon dioxide isolation material that extends laterally under an entire width of the portion of the germanium-containing material.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a fin in a semiconductor substrate, the fin having a lower first section that contains an oxidation-retarding implant region and an upper second section that is substantially free of the oxidation-retarding implant region, forming a sidewall spacer on opposite sides of the upper portion of the fin, forming a first layer of insulating material adjacent the sidewall spacers and the upper second section of the lower portion of the fin, and, with the first layer of insulating material in position, performing a thermal anneal process to convert the portion of the upper second section of the fin that is in contact with the first layer of insulating material into an oxide fin isolation region positioned under the fin above the lower first section of the fin.
Abstract:
A method includes forming a plurality of trenches to define a fin, forming a first layer of insulating material in the trenches, forming a sidewall spacer on opposite sides of the fin above an upper surface of the first layer, removing the first layer and performing a fin-trimming etching process to define a plurality of increased-size trenches. The method also includes forming a first oxidation-blocking layer of insulating material in the increased-size trenches, forming a second layer of insulating material above the oxidation-blocking layer, and performing a thermal anneal process to convert at least a part of the portion of the fin that is in contact with the second layer of insulating material into an oxide fin isolation region
Abstract:
A system, method and computer program product for implementing a quiescent current leakage specific model into semiconductor device design and circuit design flows. The leakage model covers all device geometries with wide temperature and voltage ranges and, without the need for stacking factor calculations nor spread sheet based IDDQ calculations. The leakage model for IDDQ calculation incorporates further parasitic and proximity effects. The leakage model implements leakage calculations at different levels of testing, e.g., from a single device to a full chip design, and are integrated within one single model. The leakage model implements leakage calculations at different levels of testing with the leverage of a single switch setting. The implementation is via a hardware definition language code or object oriented code that can be compiled and operated using a netlist of interest, e.g., for conducting a performance analysis.
Abstract:
A semiconductor device including at least one suspended channel structure of a silicon including material, and a gate structure present on the suspended channel structure. At least one gate dielectric layer is present surrounding the suspended channel structure, and at least one gate conductor is present on the at least one gate dielectric layer. Source and drain structures may be composed of a silicon and germanium including material. The source and drain structures are in contact with the source and drain region ends of the suspended channel structure through a silicon cladding layer.
Abstract:
A method includes forming a plurality of trenches to define a fin, forming a first layer of insulating material in the trenches, forming a sidewall spacer on opposite sides of the fin above an upper surface of the first layer, removing the first layer and performing a fin-trimming etching process to define a plurality of increased-size trenches. The method also includes forming a first oxidation-blocking layer of insulating material in the increased-size trenches, forming a second layer of insulating material above the oxidation-blocking layer, and performing a thermal anneal process to convert at least a part of the portion of the fin that is in contact with the second layer of insulating material into an oxide fin isolation region.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a fin in a semiconductor substrate, the fin having a lower first section that contains an oxidation-retarding implant region and an upper second section that is substantially free of the oxidation-retarding implant region, forming a sidewall spacer on opposite sides of the upper portion of the fin, forming a first layer of insulating material adjacent the sidewall spacers and the upper second section of the lower portion of the fin, and, with the first layer of insulating material in position, performing a thermal anneal process to convert the portion of the upper second section of the fin that is in contact with the first layer of insulating material into an oxide fin isolation region positioned under the fin above the lower first section of the fin.
Abstract:
An array of stacks containing a semiconductor fins and an oxygen-impermeable cap is formed on a semiconductor substrate with a substantially uniform areal density. Oxygen-impermeable spacers are formed around each stack, and the semiconductor substrate is etched to vertically extend trenches. Semiconductor sidewalls are physically exposed from underneath the oxygen-impermeable spacers. The oxygen-impermeable spacers are removed in regions in which semiconductor fins are not needed. A dielectric oxide material is deposited to fill the trenches. Oxidation is performed to convert a top portion of the semiconductor substrate and semiconductor fins not protected by oxygen-impermeable spacers into dielectric material portions. Upon removal of the oxygen-impermeable caps and remaining oxygen-impermeable spacers, an array including semiconductor fins and dielectric fins is provided. The dielectric fins alleviate variations in the local density of protruding structures, thereby reducing topographical variations in the height of gate level structures to be subsequently formed.