Abstract:
Solder bumps are provided on round wafers through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned mask layer. Solder is injected over the pillars or BLM, filling the channels. Molten solder can be injected in cavities formed in round wafers without leakage using a carrier assembly that accommodates wafers that have been previously subjected to mask layer deposition and patterning. One such carrier assembly includes an elastomeric body portion having a round recess, the walls of the recess forming a tight seal with the round wafer. Other carrier assemblies employ adhesives applied around the peripheral edges of the wafers to ensure sealing between the carrier assemblies and wafers.
Abstract:
Solder bumps are provided on round wafers through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned mask layer. Solder is injected over the pillars or BLM, filling the channels. Molten solder can be injected in cavities formed in round wafers without leakage using a carrier assembly that accommodates wafers that have been previously subjected to mask layer deposition and patterning. One such carrier assembly includes an elastomeric body portion having a round recess, the walls of the recess forming a tight seal with the round wafer. Other carrier assemblies employ adhesives applied around the peripheral edges of the wafers to ensure sealing between the carrier assemblies and wafers.
Abstract:
A method for providing a matrix material between a bonded pair of substrates with a homogeneous distribution of anisotropic filler particles is provided. Functionalized anisotropic filler particles are mixed uniformly with a matrix material to form a homogenous mixture. A bonded assembly of a first substrate and a second substrate with an array of electrical interconnect structures is placed within a vacuum environment. The homogenous mixture of the matrix material and the anisotropic filler particles is dispensed around the array of electrical interconnect structures. A gas is abruptly introduced into the vacuum environment to induce an implosion of the homogenous mixture. The implosion causes the homogenous mixture to fill the cavity between the first and second substrates without causing agglomeration of the anisotropic filler particles. The mixture filling the space between the first and second substrates has a homogenous distribution of the anisotropic filler particles.