Abstract:
Storage transistors for flash memory areas in semiconductor devices may be provided on the basis of a self-aligned charge storage region. To this end, a floating spacer element may be provided in some illustrative embodiments, while, in other cases, the charge storage region may be efficiently embedded in the electrode material in a self-aligned manner during a replacement gate approach. Consequently, enhanced bit density may be achieved, since additional sophisticated lithography processes for patterning the charge storage region may no longer be required.
Abstract:
In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.
Abstract:
In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.
Abstract:
A method of controlling temperature in a semiconductor device that includes a stacked device configuration is disclosed. The method includes providing a Peltier element having a metal-based heat sink formed above a first substrate of the stacked device configuration and a metal-based heat source formed above a second substrate of the stacked device configuration, and establishing a current flow through the Peltier element when the semiconductor device is in a specified operating phase.
Abstract:
A method of controlling temperature in a semiconductor device that includes a stacked device configuration is disclosed. The method includes providing a Peltier element having a metal-based heat sink formed above a first substrate of the stacked device configuration and a metal-based heat source formed above a second substrate of the stacked device configuration, and establishing a current flow through the Peltier element when the semiconductor device is in a specified operating phase.
Abstract:
Storage transistors for flash memory areas in semiconductor devices may be provided on the basis of a self-aligned charge storage region. To this end, a floating spacer element may be provided in some illustrative embodiments, while, in other cases, the charge storage region may be efficiently embedded in the electrode material in a self-aligned manner during a replacement gate approach. Consequently, enhanced bit density may be achieved, since additional sophisticated lithography processes for patterning the charge storage region may no longer be required.