Abstract:
A method of maintaining a substantially stable engine speed after a garage shift of an automatic transmission includes identifying a moment when a load from the automatic transmission is applied to an engine via a torque converter during the garage shift based on a first turbine speed change with respect to a reference engine speed change and a second turbine speed change with respect to an actual engine speed change. The method further includes generating a feed forward torque command based on a turbine speed decrement after identifying the moment when the load from the automatic transmission is applied to the engine, and controlling the engine based on the feed forward torque command to maintain a substantially stable engine speed after the garage shift.
Abstract:
A method of controlling torque output of a power-plant during launch of a vehicle having a transmission with a manually-operated clutch is disclosed. The power-plant torque is varied based on clutch pedal and throttle pedal positions using a proportional-integral-derivative (PID) control logic in an electronic fuel control system. The method includes setting power-plant idle speed, detecting clutch engagement without application of the throttle pedal, and raising power-plant torque after clutch engagement is detected. In each PID feedback loop, the method includes detecting actual power-plant speed and a rate of change in actual power-plant speed, and adjusting the raised power-plant torque in response to the determined rate of change in actual power-plant speed. The method additionally includes determining a difference between the set idle speed and the actual power-plant speed, and maintaining constant power-plant torque, if the difference between the set idle and actual power-plant speeds is within an acceptable range.
Abstract:
An adaptive engine speed control system includes an idle condition module that determines whether the engine is idling and determines whether an actual engine speed is different than a desired engine speed. The desired engine speed corresponds to a commanded engine speed. A torque reserve determination module adjusts at least one of a torque reserve and the desired engine speed based on the determination of whether the engine is idling and the determination that the actual engine speed differs from the desired engine speed. The torque reserve corresponds to a quantity of torque reserved to respond to an anticipated future load on the engine.
Abstract:
A vehicle includes an engine, transmission, engine control module (ECM), and transmission control module (TCM). The transmission includes an input member and an input clutch which selectively connects a crankshaft of the engine to the input member. The TCM identifies a target clutch torque of the input clutch during a creep maneuver of the vehicle, and communicates the identified target clutch torque to the ECM. The ECM maintains engine idle speed at a threshold level through the creep maneuver and a requested launch using the target clutch torque as a feed-forward term. A method includes identifying a target clutch torque of the input clutch during a creep maneuver, and communicating the identified target clutch torque to the ECM. The idle speed is maintained at a threshold level by the ECM through the creep maneuver and a detected launch using the target clutch torque as a feed-forward idle speed control term.
Abstract:
A driver request module determines a driver torque request based on an accelerator pedal position, a first difference between a target engine speed and a transmission input speed, and a second difference between the transmission input speed and a measured engine speed. A request generating module generates first and second torque requests based on the driver torque request. An engine speed control module generates third and fourth torque requests based on a target engine speed and the first and second differences. Based on a mode signal: a first selection module sets a fifth torque request to one of the first and third torque requests; and a second selection module sets a sixth torque request to one of the second and fourth torque requests. An adjusting module selectively adjusts an engine operating parameter based on at least one of the fifth and sixth torque requests.
Abstract:
A difference module determines a difference between an engine speed and a transmission input shaft speed. A state control module sets a signal to a first state when a driver releases an accelerator pedal and selectively transitions the signal from the first state to a second state when the difference is less than zero. An immediate torque request module decreases an engine torque request when the signal is in the first state and selectively increases the engine torque request when the signal is in the second state. At least one of: a spark control module that selectively adjusts spark timing based on the engine torque request; and a fuel control module that selectively adjusts fueling based on the engine torque request.
Abstract:
A method of controlling the performance of a vehicle from a stationary condition includes operating a vehicle powertrain in a creep mode following the disengagement of a driver-operated braking device; and operating the vehicle powertrain in a launch mode following an engagement of a driver-operated acceleration device subsequent to the disengagement of the driver-operated braking device. Operating a vehicle powertrain in a creep mode includes: applying a friction clutch to couple an engine crankshaft of the vehicle powertrain with an input shaft of the transmission; determining a torque command to accelerate the vehicle powertrain at a predetermined rate; providing the torque command to an engine controller to controllably increase the input torque to the transmission; and operating a closed loop engine speed control module to prevent the crankshaft speed from slowing below a predetermined engine idle speed.
Abstract:
A method of controlling torque output of a power-plant during launch of a vehicle having a transmission with a manually-operated clutch is disclosed. The power-plant torque is varied based on clutch pedal and throttle pedal positions using a proportional-integral-derivative (PID) control logic in an electronic fuel control system. The method includes setting power-plant idle speed, detecting clutch engagement without application of the throttle pedal, and raising power-plant torque after clutch engagement is detected. In each PID feedback loop, the method includes detecting actual power-plant speed and a rate of change in actual power-plant speed, and adjusting the raised power-plant torque in response to the determined rate of change in actual power-plant speed. The method additionally includes determining a difference between the set idle speed and the actual power-plant speed, and maintaining constant power-plant torque, if the difference between the set idle and actual power-plant speeds is within an acceptable range.
Abstract:
A method of maintaining a substantially stable engine speed after a garage shift of an automatic transmission includes identifying a moment when a load from the automatic transmission is applied to an engine via a torque converter during the garage shift based on a first turbine speed change with respect to a reference engine speed change and a second turbine speed change with respect to an actual engine speed change. The method further includes generating a feed forward torque command based on a turbine speed decrement after identifying the moment when the load from the automatic transmission is applied to the engine, and controlling the engine based on the feed forward torque command to maintain a substantially stable engine speed after the garage shift.
Abstract:
A system according to the principles of the present disclosure includes a downshift determination module and a speed control module. The downshift determination module determines when a closed-throttle downshift occurs. The closed-throttle downshift is a downshift of a transmission when a throttle valve of an engine is closed. The speed control module controls engine speed based on turbine speed during the closed-throttle downshift. The turbine speed is a speed of a turbine in a torque converter that couples the engine to the transmission.