SEMANTIC PRESERVED STYLE TRANSFER
    1.
    发明申请

    公开(公告)号:US20200311986A1

    公开(公告)日:2020-10-01

    申请号:US16366393

    申请日:2019-03-27

    Abstract: A method for image style transfer using a Semantic Preserved Generative Adversarial Network (SPGAN) includes: receiving a source image; inputting the source image into the SPGAN; extracting a source-semantic feature data from the source image; generating, by the first decoder, a first synthetic image including the source semantic content of the source image in a target style of a target image using the source-semantic feature data extracted by the first encoder of the first generator network, wherein the first synthetic image includes first-synthetic feature data; determining a first encoder loss using the source-semantic feature data and the first-synthetic feature data; discriminating the first synthetic image against the target image to determine a GAN loss; determining a total loss as a function of the first encoder loss and the first GAN loss; and training the first generator network and the first discriminator network.

    Semantic preserved style transfer

    公开(公告)号:US10832450B2

    公开(公告)日:2020-11-10

    申请号:US16366393

    申请日:2019-03-27

    Abstract: A method for image style transfer using a Semantic Preserved Generative Adversarial Network (SPGAN) includes: receiving a source image; inputting the source image into the SPGAN; extracting a source-semantic feature data from the source image; generating, by the first decoder, a first synthetic image including the source semantic content of the source image in a target style of a target image using the source-semantic feature data extracted by the first encoder of the first generator network, wherein the first synthetic image includes first-synthetic feature data; determining a first encoder loss using the source-semantic feature data and the first-synthetic feature data; discriminating the first synthetic image against the target image to determine a GAN loss; determining a total loss as a function of the first encoder loss and the first GAN loss; and training the first generator network and the first discriminator network.

Patent Agency Ranking