Abstract:
The system contains a programmable device. At least one camera is in communication with the programmable device. The camera is directed towards at least one road. The camera provides a camera signal to the programmable device. A map of an area, which includes the road, is stored in a memory of the programmable device. A plurality of traffic influences is defined in the map. A first program on the programmable device tracks vehicles on the road utilizing the camera signal. The first program recognizes at least one obstruction and communicates with the map to identify at least one of the traffic influences behind the obstruction.
Abstract:
A method of processing a timing synchronization signal includes selecting an initial sequence of complex numbers and modifying the initial sequence based upon a metric applied to the autocorrelation function to enhance its autocorrelation properties within a predetermined window about the main autocorrelation peak determined by the timing uncertainty of the system. This two-step optimization process produces a new complex sequence used for timing acquisition. It is applied by transmitting the sequence through a medium and correlating the received signal against a known error-free sequence. Only correlation within the window of the bounded timing uncertainty is performed, thus saving valuable computational cycles. Also, because the sidelobe levels of the autocorrelated function are significantly lower within the timing uncertainty window than the sidelobe levels of a non-optimized autocorrelation function of a signal, the likelihood of finding a peak for the wrong timing signal is greatly reduced.
Abstract:
A system and methods for co-site and multi-path interference mitigation are presented. A reflection signal is received from at least one aircraft surface at a sensor near a receiver antenna, and a conformal reflective phased array antenna coupled to at least one aircraft surface is configured to steer the reflection signal. The reflection signal is steered using the conformal reflective phased array antenna to reduce an amplitude of the reflection signal at the receiver antenna based on the reflection signal received at the sensor.
Abstract:
A system and method for a self calibrating conformal phased array are disclosed involving a plurality of transmit/receive elements; a plurality of embedded, calibration transmit/receive elements scattered across the array; and at least one back-end processor. The calibration transmit/receive elements are used to track any physical calibration transmit/receive element's relative position change caused by array flexure. In one or more embodiments, each of the calibration transmit/receive elements transmit a tone using a small antenna, and the other calibration transmit/receive elements receive the tone using small antennas. The calibration transmit/receive elements that receive the tone measure the phase of the received tone. At least one back-end processor uses the measured phases to determine differential phases from a phase calibration table. Also, at least one back-end processor uses the differential phases to compute a change in apparent location of each transmitting calibration transmit/receive element.
Abstract:
A cooperative geolocation system and method. The system and method involves time stamping a plurality of received signals and modifying, such as compressing, one or more of the received signals, either with the same or with different rates of compression. A processing subsystem including a geolocation processor is used to correlate various pairs of received signals and to extract time difference of arrival (TDOA) or frequency difference of arrival (FDOA) information and to use this information in cooperatively geolocating the signal source emitting the signals being analyzed. The system enables greater rates of data compression, and thus frees up bandwidth in a network in which it is employed, as compared with previously existing cooperative geolocation systems. The present system further can perform the cooperative geolocation determination without first decompressing the compressed signals, but rather performing a correlation process directly on designated pairs of signals to extract the needed TDOA/FDOA information.
Abstract:
A cooperative geolocation system and method. The system and method involves time stamping a plurality of received signals and modifying, such as compressing, one or more of the received signals, either with the same or with different rates of compression. A processing subsystem including a geolocation processor is used to correlate various pairs of received signals and to extract time difference of arrival (TDOA) or frequency difference of arrival (FDOA) information and to use this information in cooperatively geolocating the signal source emitting the signals being analyzed. The system enables greater rates of data compression, and thus frees up bandwidth in a network in which it is employed, as compared with previously existing cooperative geolocation systems. The present system further can perform the cooperative geolocation determination without first decompressing the compressed signals, but rather performing a correlation process directly on designated pairs of signals to extract the needed TDOA/FDOA information.
Abstract:
A system and methods for co-site and multi-path interference mitigation are presented. A reflection signal is received from at least one aircraft surface at a sensor near a receiver antenna, and a conformal reflective phased array antenna coupled to at least one aircraft surface is configured to steer the reflection signal. The reflection signal is steered using the conformal reflective phased array antenna to reduce an amplitude of the reflection signal at the receiver antenna based on the reflection signal received at the sensor.
Abstract:
In one embodiment, a method to generate a set of tone frequencies within an operating frequency range for use in a timing acquisition process in a wireless communication system comprises selecting a system frequency resolution generating a set of frequency tones which are relatively prime integers with respect to the frequency resolution and within an operating frequency range of the wireless communication system. Other embodiments may be described.
Abstract:
A wideband antenna array including a plurality of antenna element cards. In certain embodiments the cards include a plurality of first radiators and a plurality of second radiators. The first radiators operate in a low band portion of the array's operating spectrum, and the second radiators operate in a high-band portion of the array's operating spectrum. In certain other embodiments at least one of the cards includes a pair of radiators. The radiators in the pair are oriented in substantially opposite directions. In certain other embodiments a first plurality of the antenna element cards includes at least a first radiator, a second radiator and electronics for controlling both the first and second radiators. A second plurality of the antenna element cards includes at least a first radiator, a second radiator and electronics for controlling only one of the first and second radiators.
Abstract:
A system and method for a self calibrating conformal phased array are disclosed involving a plurality of transmit/receive elements; a plurality of embedded, calibration transmit/receive elements scattered across the array; and at least one back-end processor. The calibration transmit/receive elements are used to track any physical calibration transmit/receive element's relative position change caused by array flexure. In one or more embodiments, each of the calibration transmit/receive elements transmit a tone using a small antenna, and the other calibration transmit/receive elements receive the tone using small antennas. The calibration transmit/receive elements that receive the tone measure the phase of the received tone. At least one back-end processor uses the measured phases to determine differential phases from a phase calibration table. Also, at least one back-end processor uses the differential phases to compute a change in apparent location of each transmitting calibration transmit/receive element.