Abstract:
A method and system for accurate and precise representation of color for still and moving images, particularly sequences of digitized color images. Spectral and/or extended dynamic range information is retained as images are captured, processed, and presented during color adjustment. Using this extra spectral information, various methodologies for further presenting or processing the color within these images can be optimized. Presentation-device independence is achieved not by attempting to discover a device-independent intermediate representation, but rather by deferring the binding and mapping of color representation onto a presentation device until its actual use.
Abstract:
Systems, methods, and computer programs for high quality wide-range multi-layer image compression coding, including consistent ubiquitous use of floating point values in essentially all computations; an adjustable floating-point deadband; use of an optimal hand-split filter; use of entire SNR layers at lower resolution levels; targeting of specific SNR layers to specific quality improvements; concentration of coding bits in regions of interest in targeted band-split and SNR layers; use of statically-assigned targets for high-pass and/or for SNR layers; improved SNR by using a lower quantization value for regions of an image showing a higher compression coding error; application of non-linear functions of color when computing difference values when creating an SNR layer; use of liner overall quantization at lower resolution levels with regional quantization scaling; removal of source image noise before motion-compensated compression or film steadying; use of one or more full-range low bands; use of alternate quantization control images for SNR bands and other high resolution enhancing bands; application of lossless variable-length coding using adaptive regions; use of a folder and file structure for layers of bits; and a method of inserting new intra frames by counting the number of bits needed for a motion compensated frame.
Abstract:
Motion compensation for video compression using a “flowfield” comprising a per-pixel field of motion vectors and confidence values. Flowfields can be quantized transform coded for compression motion compensation. Encoding-only flowfields match with one or more previous and subsequent frames to determine both modulation for resolution-enhancing layers, as well as sharp/soft filtering for an original image, a base layer, and for resolution-enhancing layers. Encoding-only flowfields can be used with various codec types by using the flowfield motion vector length and confidence to drive sharp/soft filters to improve efficiency via in-place noise reduction. Pixels may be displaced using encoding-only flowfields to nearby frames, and weighted for efficient noise reduction. Encoding-only flowfields are discarded after their use in encoding, and therefore do not require coded bits. Encoding-only flowfields can be applied to all frame types, including intra, predicted, forward flowfield-predicted “F” frames, and multiply-predicted “M” frame types, and improve intra coding efficiency.
Abstract:
A method and system for accurate and precise representation of color for still and moving images, particularly sequences of digitized color images. Spectral and/or extended dynamic range information is retained as images are captured, processed, and presented during color adjustment. Using this extra spectral information, various methodologies for further presenting or processing the color within these images can be optimized. Presentation-device independence is achieved not by attempting to discover a device-independent intermediate representation, but rather by deferring the binding and mapping of color representation onto a presentation device until its actual use.
Abstract:
A method, system, and computer programs for improving the image quality of one or more predicted frames in a video image compression system, where each frame comprises a plurality of pixels. A picture region or macroblock of certain types of frames can be encoded by reference to one or more referenceable frames in some cases, and by reference to two or more referenceable frames in other cases. Such encoding may include interpolation, such as an unequal weighting. The DC value or AC pixel values of a picture region may be interpolated as well, with or without weighting. A code pattern of such frames having a variable number of bidirectional predicted frames can be dynamically determined. Frames can be transmitted from an encoder to a decoder in a delivery order different from a display order. Sharpening and/or softening filters can be applied to a picture region of certain frames during motion vector compensated prediction.
Abstract:
A system and method for bit-exact lossless compression coding of still and moving images. An original image is encoded to produce a lossy compressed image, and is also used to construct a sorted list of bin values to which the lossy image is compared to generate output from which the original image can be losslessly reconstructed. The similarity of corresponding pixel values between the lossy image and the original image permits efficient generation of a lossless residual that allows for bit-exact reproduction of the original image. Pixel values nearly equidistant from two sorted list values are on a “cusp” and either directly coded or flagged as cusp values from which corresponding lossless values can be re-determined. Non-cusp pixel values are coded as the difference between the index of the sorted bin having a value nearest to the floating point value being processed, and the index of the sorted bin containing the exact pixel value of the original image.
Abstract:
Systems, methods, and computer programs for high quality wide-range multi-layer image compression coding, including consistent ubiquitous use of floating point values in essentially all computations; an adjustable floating-point deadband; use of an optimal band-split filter; use of entire SNR layers at lower resolution levels; targeting of specific SNR layers to specific quality improvements; concentration of coding bits in regions of interest in targeted band-split and SNR layers; use of statically-assigned targets for high-pass and/or for SNR layers; improved SNR by using a lower quantization value for regions of an image showing a higher compression coding error; application of non-linear functions of color when computing difference values when creating an SNR layer; use of finer overall quantization at lower resolution levels with regional quantization scaling; removal of source image noise before motion-compensated compression or film steadying; use of one or more full-range low bands; use of alternate quantization control images for SNR bands and other high resolution enhancing bands; application of lossless variable-length coding using adaptive regions; use of a folder and file structure for layers of bits; and a method of inserting new intra frames by counting the number of bits needed for a motion compensated frame.
Abstract:
A method and system for accurate and precise representation of color for still and moving images, particularly sequences of digitized color images. Spectral and/or extended dynamic range information is retained as images are captured, processed, and presented during color adjustment. Using this extra spectral information, various methodologies for further presenting or processing the color within these images can be optimized. Presentation-device independence is achieved not by attempting to discover a device-independent intermediate representation, but rather by deferring the binding and mapping of color representation onto a presentation device until its actual use.
Abstract:
Systems, methods, and processor executable code for high quality wide-range multi-layer image compression of a sequence of video images. A computer-implemented method of adding signal-to-noise improvement layers which are targeted to specific aspects of a sequence of images. The method comprises selecting one or more aspects of a coded image to improve, isolating those image aspects using the selection criteria, and coding a signal-to-noise layer using the isolated coded image aspects. A computer-implemented method for generating a signal-to-noise correction layer from a digitized video image represented as pixels. The method comprises quantizing and dequantizing the digitized video image to create a coded image, subtracting the coded image from the digitized video image to create a signal-to-noise difference image represented as pixels, and applying one or both of quantization weighting and pixel weighting to the signal-to-noise difference image pixel values such that larger difference image pixel values have smaller quantized values.
Abstract:
An image processing system uses a pseudo-random pixel interlace method and apparatus for capturing groups of pixels as image frames. This pseudo-random method eliminates the artifacts commonly present in standard regular line raster scan imaging systems. Moreover, the pixel interlacing method permits the construction of higher resolution frames from a series of orthogonal lower resolution frames. An enhancement circuit deduces information from previous pixel group frames and contributes additional detail to the pixels of the frame being processed. The format of the pixel interlaced groups permits the present invention to be used in a wide variety of normally incompatible target display rates. The present invention can also be used in a computing system as an auto-synchronizer for processing signals from different sources.