Abstract:
A light source device including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. Each of the first LED chips includes a first chip substrate, a first semiconductor layer, and a plurality of first electrodes, and the first electrodes are disposed on the upper surface of the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. The second LED chip includes a second chip substrate, a second semiconductor layer, and a plurality of second electrodes. A thickness of the second chip substrate is different from than a thickness of the first chip substrate, and the second electrodes are disposed on the upper surface of the substrate.
Abstract:
A method of forming a layer of glue on a work piece includes: spraying the glue on the work piece; obtaining specification data of the glue by measuring a weight of the glue being sprayed on the work piece; and adjusting the spraying amount of the glue in real time according to the specification data of the glue.
Abstract:
A light source device including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. Each of the first LED chips includes a first chip substrate, a first semiconductor layer, and a plurality of first electrodes, and the first electrodes are disposed on the upper surface of the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. The second LED chip includes a second chip substrate, a second semiconductor layer, and a plurality of second electrodes. A thickness of the second chip substrate is different from than a thickness of the first chip substrate, and the second electrodes are disposed on the upper surface of the substrate.
Abstract:
A light emitting module including a substrate, a plurality of first light emitting diode (LED) chips and a plurality of second LED chips is provided. The substrate has a cross-shaped central region and a peripheral region surrounding the cross-shaped central region. The first LED chips are disposed on the substrate and at least located in the cross-shaped central region. The second LED chips are disposed on the substrate and at least located in the peripheral region. A size of each second LED chip is smaller than a size of each first LED chip. The number of the first LED chips located in the peripheral region is smaller than that in the cross-shaped central region. The number of the second LED chips located in the cross-shaped central region is smaller than that in the peripheral region.
Abstract:
A light source device including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. Each of the first LED chips includes a first chip substrate, a first semiconductor layer, and a plurality of first electrodes, and the first electrodes are disposed on the upper surface of the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. The second LED chip includes a second chip substrate, a second semiconductor layer, and a plurality of second electrodes. A thickness of the second chip substrate is different from than a thickness of the first chip substrate, and the second electrodes are disposed on the upper surface of the substrate.
Abstract:
A light emitting diode (LED) is revealed. The LED includes a substrate, a first-type-doped layer, a light emitting layer, a second-type-doped layer, a plurality of first grooves, a second groove, an insulation layer, a first contact, and a second contact. The LED features that the second groove is connected to one end of each first groove and penetrates the second-type-doped layer and the light emitting layer to expose a part of the first-type-doped layer. The contact area between the first contact and the first-type-doped layer is increased. Therefore, the LED is worked at high current densities without heat accumulation. Moreover, the light emitting area is not reduced and the light emitting efficiency is not affected. The LED is flipped on a package substrate to form a flip-chip LED package.
Abstract:
A light emitting module including a substrate, a plurality of first light emitting diode (LED) chips and a plurality of second LED chips is provided. The substrate has a cross-shaped central region and a peripheral region surrounding the cross-shaped central region. The first LED chips are disposed on the substrate and at least located in the cross-shaped central region. The second LED chips are disposed on the substrate and at least located in the peripheral region. A size of each second LED chip is smaller than a size of each first LED chip. The number of the first LED chips located in the peripheral region is smaller than that in the cross-shaped central region. The number of the second LED chips located in the cross-shaped central region is smaller than that in the peripheral region.
Abstract:
A light source module including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. A first distance is between a top surface of each of the first LED chips away from the upper surface of the substrate and the upper surface, a second distance is between a top surface of the second LED chip away from the upper surface of the substrate and the upper surface, and the second distance is greater than each of the first distances.
Abstract:
A light emitting diode including a first doped layer, a light emitting layer, a second doped layer and a substrate is provided. A plurality of first grooves penetrate through the second doped layer and the light emitting layer. Thus, a partial surface of the first doped layer is exposed. At least one of the plurality of first grooves extends to edges of the second dope layer and the light emitting layer. An insulating layer is disposed over a part of second doped layer and extends to sidewalls of the first grooves. A first contact is set in the first grooves and electrically connected to the first doped layer. A second contact is set on the second doped layer and electrically connected to the second doped layer. By the first grooves, the first contact can be electrically connected to the first doped layer for improving current spreading.
Abstract:
A light emitting diode (LED) package includes at least one light emitting unit having a first electrode and a second electrode, a first molding compound covering a part of the light emitting unit to expose the first electrode and the second electrode, and a first light transmissive plate disposed on the first molding compound opposite the light emitting unit. A side surface of the first molding compound and a side surface of the first light transmissive plate are coplanar or have even adjoined edges.