Abstract:
A light emitting diode chip including an epitaxy stacked layer, first and second electrodes and a first reflective layer is provided. The epitaxy stacked layer includes first-type and second-type semiconductor layers and a light-emitting layer. The first and second electrodes are respectively electrically connected to the first-type and second-type semiconductor layers. An orthogonal projection of the light-emitting layer on the first-type semiconductor layer is misaligned with an orthogonal projection of the first electrode on the first-type semiconductor layer. The first reflective layer is disposed on the epitaxy stacked layer, the first and second electrodes. An orthogonal projection of the first reflective layer on the second-type semiconductor layer is misaligned with an orthogonal projection of the second electrode on the second-type semiconductor layer. Furthermore, a light emitting diode device is also provided.
Abstract:
A light emitting device includes a light emitting unit, a light transmissive layer and an encapsulant. The light emitting unit includes a substrate, an epitaxial structure layer disposed on the substrate, and a first electrode and a second electrode disposed on the same side of the epitaxial structure layer, respectively. The light emitting unit is disposed on the light transmissive layer and at least a part of the first electrode and a part of the second electrode are exposed by the light transmissive layer. The encapsulant encapsulates the light emitting unit and at least exposes a part of the first electrode and a part of the second electrode. Each of the first electrode and the second electrode extends outward from the epitaxial structure layer, and covers at least a part of an upper surface of the encapsulant, respectively.
Abstract:
A light-emitting device and a light-emitting module using the same are provided. The light-emitting device includes a substrate module and a light-emitting component. The substrate module includes a substrate, a first conductive layer, an insulation layer and a second conductive layer. The substrate has an upper surface. The insulation layer is formed on the upper surface of the substrate, separates the substrate and the first conductive layer and has an opening. The second conductive layer connects to the upper surface of the substrate and is separated from the first conductive layer. The light-emitting component is disposed on the substrate module and electrically connected to the first conductive layer and the second conductive layer.
Abstract:
A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
Abstract:
A method of mass transferring electronic devices includes following steps. A wafer is provided. The wafer includes a substrate and a plurality of electronic devices. The electronic devices are arranged in a matrix on a surface of the substrate. The wafer is attached to a temporary fixing film. The wafer is cut so that the wafer is divided into a plurality of blocks. Each of the blocks includes at least a part of the electronic devices and a sub-substrate. The temporary fixing film is stretched so that the blocks on the temporary fixing film are separated from each other as the temporary fixing film is stretched. At least a part of the blocks is selected as a predetermined bonding portion, and each of the blocks in the predetermined bonding portion is transferred to a carrying substrate in sequence, so that the electronic devices in the predetermined bonding portion arc bonded to the carrying substrate. The sub-substrates of the blocks are removed. Another method of mass transferring electronic devices is also provided.
Abstract:
The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly. Thereby, the reflection layer can have the effect of mirror reflection and the scattering phenomenon on the reflected light can be reduced as well.
Abstract:
A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
Abstract:
A semiconductor light emitting structure includes an epitaxial structure, an N-type electrode pad, a P-type electrode pad and an insulation layer. The N-type electrode pad and the P-type electrode pad are disposed on the epitaxial structure apart, wherein the P-type electrode pad has a first upper surface. The insulation layer is disposed on the epitaxial structure and located between the N-type electrode pad and the P-type electrode pad, wherein the insulation layer has a second upper surface. The first upper surface of the P-type electrode pad and the second upper surface of the insulation layer are coplanar.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A light emitting component includes a light emitting unit, a phosphor layer and a distributed Bragg reflector layer. The phosphor layer is disposed on the light emitting unit and the distributed Bragg reflector layer is disposed above the phosphor layer. The distributed Bragg reflector layer is formed by at least two materials with different refractive indices.