Abstract:
A light emitting device including a light emitting unit and a phosphor resin layer is provided. The light emitting unit has a top surface and a bottom surface opposite to each other. Each of the light emitting units includes two electrodes. The two electrodes are disposed on the bottom surface. The phosphor resin layer is disposed on the top surface of the light emitting unit. One side of the phosphor resin layer has a mark. One of the two electrodes is closer to the mark with respect to the other one of the two electrodes.
Abstract:
A light-emitting device is provided. The light-emitting device includes a substrate having a long edge and a short edge, at least one electrode pad assembly, and at least one light-emitting element. The at least one electrode pad assembly is disposed on the substrate and includes a first electrode pad and a second electrode pad. The at least one light-emitting element has a plurality of electrodes electrically connected to the first electrode pad and the second electrode pad of the at least one electrode pad assembly. The first electrode pad and the second electrode pad are arranged along a direction parallel to the short side.
Abstract:
A light-emitting device includes a substrate, a light-emitting component, a translucent layer, an adhesive layer, a reflective layer and translucent encapsulant. The light-emitting component is disposed on the substrate. The adhesive layer is formed between the light-emitting component and the translucent layer. The reflective layer is formed above the substrate and covering a lateral surface of the light-emitting component, a lateral surface of the adhesive layer and a lateral surface of the translucent layer. The translucent encapsulant is formed on the substrate and encapsulating the light-emitting component, the translucent layer and the reflective layer.
Abstract:
A light emitting device includes a light source, a light source carrier and a circuit board. The circuit board is configured to provide power to the light source via the light source carrier. The circuit board includes a metal substrate having an upper surface, the upper surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the upper surface of the metal substrate; wherein the heat conduction area is exposed from the solder resist layer, and the heat conduction area is connected to the light source carrier.
Abstract:
A light emitting module including a light emitting device package structure and a heat dissipation structure is provided. The light emitting device package structure includes light emitting devices, a patterned reflective element and a patterned conductive layer. The patterned reflective element is disposed around side surfaces of the light emitting devices and exposes a first bottom surface of a first pad and a second bottom surface of a second pad. The patterned conductive layer is disposed on the first bottom surface of the first pad and the second bottom surface of the second pad. The light emitting devices are electrically connected to each other in a series connection, a parallel connection or a series-parallel connection through the patterned conductive layer. The heat dissipation structure is disposed below the light emitting device package structure and includes a heat dissipation unit and a patterned circuit layer disposed on the heat dissipation unit.
Abstract:
An edge lighting light emitting diode (LED) structure and a method of manufacturing the same are provided. The edge lighting LED structure includes a substrate, an electrode pattern, a chip, an encapsulation layer and a fluorescent layer. The electrode pattern at least includes two first conducting portions separately disposed on an upper surface of the substrate, two second conducting portions separately disposed on a lower surface of the substrate, and two conducting holes separately vertically penetrating through the substrate, each conducting hole connects a first conducting portion and a second conducting portion, and the conducting holes are exposed on a lateral surface of the substrate. A second surface of the chip is disposed on the first conducting portions. A top surface of the encapsulation layer exposes and is aligned with the first surface of the chip. The fluorescent layer covers a first surface of the chip.
Abstract:
A light emitting module including a light emitting device package structure and a heat dissipation structure is provided. The light emitting device package structure includes light emitting devices, a patterned reflective element and a patterned conductive layer. The patterned reflective element is disposed around side surfaces of the light emitting devices and exposes a first bottom surface of a first pad and a second bottom surface of a second pad. The patterned conductive layer is disposed on the first bottom surface of the first pad and the second bottom surface of the second pad. The light emitting devices are electrically connected to each other in a series connection, a parallel connection or a series-parallel connection through the patterned conductive layer. The heat dissipation structure is disposed below the light emitting device package structure and includes a heat dissipation unit and a patterned circuit layer disposed on the heat dissipation unit.
Abstract:
A package structure and a manufacturing method thereof are disclosed. The package structure includes: a substrate; at least one light emitting diode disposed on the substrate by eutectic bonding; and at least one Zener diode disposed on the substrate by at least one silver glue. The method of manufacturing the package structure includes: providing a substrate; performing a eutectic bonding process to dispose at least one light emitting diode on the substrate; and performing a silver glue bonding process at room temperature to dispose at least one Zener diode on the substrate.