Abstract:
A balloon is provided having a balloon envelope having a top portion and a bottom portion, a payload positioned beneath the balloon envelope, a moveable plate positioned atop the balloon envelope, a line attached to the moveable plate, and a control system configured to cause the line to be pulled to cause the moveable plate to be pulled towards the bottom portion of the balloon envelope such that the top portion of the balloon envelope is moved towards the bottom portion of the balloon envelope forcing gas out of the balloon envelope such that the balloon envelope is collapsed. The balloon may further include a drag plate positioned beneath the balloon envelope that serves to slow the descent of the payload to the earth.
Abstract:
A balloon is provided having a balloon envelope, a payload positioned beneath the balloon envelope, and a drag plate positioned beneath the balloon envelope and attached to the payload, and a control system configured to initiate a process to cause the balloon envelope to no longer provide lift to the payload, wherein the drag plate serves to slow the descent of the payload to the earth.
Abstract:
Methods and apparatus are disclosed for receiving and transmitting signals at a balloon. Received signals can be received at the balloon, which can include a payload and an envelope. The envelope can include at least a first antenna section and a second antenna section. Both the first and second antenna sections are configured at least to receive the received signals and convey at least the received signals to the payload. The first antenna section can include a first metallization pattern to receive a first type of signal. The second antenna section can include a second metallization pattern to receive a second type of signal, with the first metallization pattern being different from the second metallization pattern.
Abstract:
Embodiments relate to a marketplace for inter-network links between a balloon network and a terrestrial data network. An example method may involve a computer-based purchasing agent: (i) determining a demand for inter-network bandwidth between a balloon network and a terrestrial data network, (ii) determining one or more offers to provide an inter-network link, wherein the inter-network link provides inter-network bandwidth between the balloon network and the terrestrial data network, and wherein each offer is associated with a corresponding client device, (iii) based at least in part on a comparison of: (a) the demand for inter-network bandwidth and (b) the one or more offers to provide an inter-network link, selecting one or more of the offers to provide an inter-network link, and (iv) initiating a process to establish an inter-network link at each client device that corresponds to one of the one or more selected offers.
Abstract:
Embodiments relate to a marketplace for inter-network links between a balloon network and a terrestrial data network. An example method may involve a computer-based purchasing agent: (i) determining a demand for inter-network bandwidth between a balloon network and a terrestrial data network, (ii) determining one or more offers to provide an inter-network link, wherein the inter-network link provides inter-network bandwidth between the balloon network and the terrestrial data network, and wherein each offer is associated with a corresponding client device, (iii) based at least in part on a comparison of: (a) the demand for inter-network bandwidth and (b) the one or more offers to provide an inter-network link, selecting one or more of the offers to provide an inter-network link, and (iv) initiating a process to establish an inter-network link at each client device that corresponds to one of the one or more selected offers.
Abstract:
A high-altitude balloon is provided that may use at least one conductive coil to facilitate attitude control of the balloon. The balloon may include an envelope, a conductive coil, and a control system. The conductive coil may be operatively coupled to the envelope, and the control system may be configured to perform functions. The functions may include determining a measure of rotation with respect to a predetermined orientation of the balloon. The functions may additionally include causing a current to be applied to the conductive coil in a manner such that torque is applied to the envelope that counteracts the measure of rotation and substantially returns the balloon to the predetermined orientation.
Abstract:
Embodiments relate to a marketplace for inter-network links between a balloon network and a terrestrial data network. An example method may involve a computer-based purchasing agent: (i) determining a demand for inter-network bandwidth between a balloon network and a terrestrial data network, (ii) determining one or more offers to provide an inter-network link, wherein the inter-network link provides inter-network bandwidth between the balloon network and the terrestrial data network, and wherein each offer is associated with a corresponding client device, (iii) based at least in part on a comparison of: (a) the demand for inter-network bandwidth and (b) the one or more offers to provide an inter-network link, selecting one or more of the offers to provide an inter-network link, and (iv) initiating a process to establish an inter-network link at each client device that corresponds to one of the one or more selected offers.
Abstract:
Methods and apparatus are disclosed for receiving and transmitting signals at a balloon. Received signals can be received at the balloon, which can include a payload and an envelope. The envelope can include at least a first antenna section and a second antenna section. Both the first and second antenna sections are configured at least to receive the received signals and convey at least the received signals to the payload. The first antenna section can include a first metallization pattern to receive a first type of signal. The second antenna section can include a second metallization pattern to receive a second type of signal, with the first metallization pattern being different from the second metallization pattern.
Abstract:
The present disclosure provides a method and apparatus for turning an envelope of a balloon into a parachute. The balloon may include a payload, an envelope filled with a lift gas, and a parachute system. The parachute system may include a fuse couple to the envelope. The parachute system may also include an activation system coupled to the fuse. The activation system may be configured to ignite the fuse. The fuse may be ignitable to melt through at least a portion of the envelope to separate an upper portion of the envelope from a lower portion of the envelope. The upper portion of the envelope may be coupled to the payload such that when separated from the lower portion, the upper portion performs as a parachute for the payload.