Abstract:
The optical component includes a first substrate, a first diffractive layer formed on the first substrate, a second substrate, a second diffractive layer formed on the second substrate, and a bonding material disposed between the first substrate and the second substrate and connecting the first substrate and the second substrate. The second diffractive layer is disposed opposite to the first diffractive layer, and both the first diffractive layer and the second diffractive layer are located between the first substrate and the second substrate. A gap is formed between the first diffractive layer and the second diffractive layer.
Abstract:
The present invention provides a projector including a laser module and a lens module, wherein the lens module includes a plurality of lens and a plurality of diffractive optical elements. In the operations of the projector, the laser module is arranged to generate at least one laser beam; each of the lenses is arranged to receive one of the at least one laser beam to generate a collimated laser beam; and the diffractive optical elements correspond to the lenses, respectively, and each of the diffractive optical elements is arranged to receive the collimated laser beam from the corresponding lens to generate an image. The images generated by the diffractive optical elements form a projected image of the projector. By using the projector of the present invention, the projected image may have higher resolution or field of view that is advantageous for the 3D sensing system.
Abstract:
The present invention provides a projector including a laser module and a lens module, wherein the lens module includes a plurality of lens and a plurality of diffractive optical elements. In the operations of the projector, the laser module is arranged to generate at least one laser beam; each of the lenses is arranged to receive one of the at least one laser beam to generate a collimated laser beam; and the diffractive optical elements correspond to the lenses, respectively, and each of the diffractive optical elements is arranged to receive the collimated laser beam from the corresponding lens to generate an image. The images generated by the diffractive optical elements form a projected image of the projector. By using the projector of the present invention, the projected image may have higher resolution or field of view that is advantageous for the 3D sensing system.
Abstract:
An image capture module is disclosed, which includes a holder and a lens unit. A plurality of through holes are disposed on the holder, wherein at least one light blocking portion is disposed between the two adjacent through holes. The lens unit is disposed in the holder and has a plurality of light gathering regions and at least one non-light gathering region, wherein the light gathering regions respectively align with each of the through holes, and the non-light gathering region aligns with the light blocking portion.
Abstract:
A projector, a 3D sensing module and a method for fabricating the projector are provided. The 3D sensing module includes the projector and a receiver. The projector is configured to project a light beam to an object, and the receiver is configured to receive the light beam reflected from the object. The projector includes a circuit board, electronic components, a holder and a lens module. The circuit board has a plurality of first bonding pads and a plurality of second bonding pads on a top surface of the circuit board. The electronic components are bonded on the first bonding pads. The holder has a cavity and third bonding pads bonded on and electrically connected to the second bonding pads. The lens module is disposed in the cavity of the holder.
Abstract:
A light wave-guide optical element for use in a head-mounted display (HMD) or in a head-up display (HUD) includes an organic optical material, an anti-reflection stack and an organic optical cover. The organic optical material includes multiple bulging tips surrounded by a periphery plane. The anti-reflection stack conformally covers the bulging tips and the periphery plane. The organic optical cover correspondingly covers the anti-reflection stack, the periphery plane and the bulging tips.
Abstract:
A projector assembling equipment includes a holder and at least one multi-axial adjusting device. The lens module or the light source module is disposed on the holder. The multi-axial adjusting device is connected with the holder to move the holder relative to a reference plane, and the reference plane is used to put the lens module or the light source module which is not held by the holder. The multi-axial adjusting device includes a three-axis adjusting mechanism, a rotary adjusting mechanism and a tilt adjusting mechanism. The three-axis adjusting mechanism is utilized to shift the holder at a first direction, a second direction and a third direction. The rotary adjusting mechanism is disposed on the three-axis adjusting mechanism to rotate the holder at a clockwise direction and a counterclockwise direction. The tilt adjusting mechanism is disposed on the three-axis adjusting mechanism to recline the holder relative to the reference plane.
Abstract:
A projector assembling equipment includes a holder and at least one multi-axial adjusting device. The lens module or the light source module is disposed on the holder. The multi-axial adjusting device is connected with the holder to move the holder relative to a reference plane, and the reference plane is used to put the lens module or the light source module which is not held by the holder. The multi-axial adjusting device includes a three-axis adjusting mechanism, a rotary adjusting mechanism and a tilt adjusting mechanism. The three-axis adjusting mechanism is utilized to shift the holder at a first direction, a second direction and a third direction. The rotary adjusting mechanism is disposed on the three-axis adjusting mechanism to rotate the holder at a clockwise direction and a counterclockwise direction. The tilt adjusting mechanism is disposed on the three-axis adjusting mechanism to recline the holder relative to the reference plane.
Abstract:
According to one embodiment of the present invention, an image sensing module includes a substrate, an image sensor mounted on the substrate, a holder positioned on the substrate, a plurality of lens barrels positioned in the holder, and a plurality of elastic components. Each of the lens barrels holds a lens module, and each of the elastic components is positioned between the holder and the corresponding lens barrel, and exerting forces on the holder and the corresponding lens barrel.
Abstract:
An image capture module is disclosed, which includes a holder and a lens unit. A plurality of through holes are disposed on the holder, wherein at least one light blocking portion is disposed between the two adjacent through holes. The lens unit is disposed in the holder and has a plurality of light gathering regions and at least one non-light gathering region, wherein the light gathering regions respectively align with each of the through holes, and the non-light gathering region aligns with the light blocking portion.