Abstract:
A microphone having a plural porous sound delay filter is provided. The microphone includes a housing that has a first sound passage, a second sound passage and a third sound passage. A sound element is disposed in a position that corresponds to the first sound passage in the housing, and a semiconductor chip is electrically connected with the sound element in the housing. A low frequency lag filter is disposed in the second sound passage and delays low frequency sound source and a high frequency lag filter is disposed in third sound passage and delays high frequency sound source.
Abstract:
A microphone, a manufacturing method and a control method of the microphone are provided. The microphone includes an insulating layer bonded to a surface of a substrate in which a sound inlet is formed and includes a plurality of sound apertures. A diaphragm is formed at a position that corresponds to the sound inlet of the substrate on an upper surface of the insulating layer. A displacement adjusting layer is disposed in a circumference of the diaphragm on the upper surface of the insulating layer and is configured to adjust hardness of the diaphragm based on an input sound. A fixing layer is disposed on the diaphragm and the displacement adjusting layer while spaced apart from the diaphragm and the displacement adjusting layer.
Abstract:
A method of manufacturing a microphone includes preparing a substrate and forming an oxide layer pattern on the substrate and an oxide layer on a rear side of the substrate. The vibration membrane is formed over the substrate by injecting conductive ions into the substrate. A sacrificial layer and a fixed electrode are sequentially formed on the substrate and the vibration membrane by removing the oxide layer pattern. A first photoresist layer pattern is formed on the fixed electrode, and an air inlet is formed by patterning the fixed electrode. A second photoresist layer pattern is formed on a rear side of the oxide layer, and a penetration hole, through which a portion of the vibration membrane is exposed, is formed by etching the oxide layer and the rear side of the substrate. An air layer is formed between the fixed electrode and the vibration membrane.
Abstract:
A microphone includes: a first substrate having one or more first penetration holes; a vibrating membrane disposed on the first substrate and covering the first penetration holes; a fixed membrane disposed at a predetermined distance over the vibration membrane and having a plurality of air intake holes; and a phase delay unit bonded by a bonding pad on the fixed membrane, having a plurality of second penetration holes connected to the one or more first penetration holes, and having a phase delay material in the second penetration holes. A method of manufacturing a microphone including a phase delay unit is also disclosed.
Abstract:
A method of manufacturing a microphone includes steps of forming a sound element; forming a semiconductor chip; coupling the sound element and the semiconductor chip to each other; inserting the sound element and the semiconductor chip into a case; and forming a sound hole in a lower portion of the case and in a lower portion of the sound element.
Abstract:
A microphone includes a substrate including a penetration hole; a vibration membrane disposed over the substrate and covering the penetration hole; a fixed electrode disposed over the vibration membrane and spaced apart from the vibration membrane; a fixed plate disposed over the fixed electrode; and a plurality of air inlets disposed in the fixed electrode and the fixed plate. The vibration membrane includes a plurality of slots positioned over the penetration hole, and an entire area of the plurality of slots is approximately 8% to approximately 19% of an entire area of the vibration membrane.
Abstract:
A method of manufacturing a microphone, a microphone, and a method of controlling the microphone are provided. The method includes forming a sound sensing module on a mainboard having a first sound aperture, to be connected with the first sound aperature and forming a cover having a second sound aperature that corresponds to the first sound aperature, mounted on the mainboard, and housing the sound sensing module. A first and second sound delay filters are formed in a space defined by the cover, to be connected with the second sound hole and thermal actuators are disposed at both sides of the first sound delay filter and move the first sound delay filter based on whether power is supplied. A semiconductor chip is electrically connected with the sound sensing module in the space and selectively operates the thermal actuators in response to signals from the sound sensing module.
Abstract:
A microphone includes a substrate including a penetration hole; a vibration membrane disposed over the substrate and covering the penetration hole; a fixed electrode disposed over the vibration membrane and spaced apart from the vibration membrane; a fixed plate disposed over the fixed electrode; and a plurality of air inlets disposed in the fixed electrode and the fixed plate. The vibration membrane includes a plurality of slots positioned over the penetration hole, and an entire area of the plurality of slots is approximately 8% to approximately 19% of an entire area of the vibration membrane.
Abstract:
A method of joining semiconductor substrates includes: forming an alignment key on a first semiconductor substrate; forming a first protrusion and a second protrusion, and an alignment recess positioned between the first protrusion and the second protrusion on a second semiconductor substrate; forming a first metal layer and a second metal layer on the first protrusion and the second protrusion, respectively; and joining the first semiconductor substrate and the second semiconductor substrate, in which the alignment key is positioned at the alignment recess when the first semiconductor substrate and the second semiconductor substrate are joined.
Abstract:
A microphone includes: a vibration electrode disposed in an upper portion of a substrate which has an acoustic hole; a fixed electrode separated from the upper portion of the vibration electrode by a reference distance and having an insulation membrane on each of an upper surface and a lower surface of the fixed electrode; and a piezoelectric electrode having a plurality of beams disposed in a radial direction outwards from a center of an upper portion of the fixed electrode and uniformly maintaining a space between the vibration electrode and the fixed electrode by bending the fixed electrode in one direction according to an input voltage.