Abstract:
A vehicle controller, a system including the same, and a method thereof are provided. The vehicle controller includes a processor that detect an intervening vehicle based on a line of sight direction of a user; and respond to the intervening vehicle based on an intent of the user when the intervening vehicle is detected; and a storage configured to store information regarding the line of sight direction of the user or the detected intervening vehicle.
Abstract:
A vehicle terminal automatically registering a profile image of a user to a vehicle using images stored in a mobile terminal of a user and performing a face authentication includes a communicator that performs a data communication with the mobile terminal of the user, a camera that obtains a face image of the user, and a processor that registers the profile image of the user using an image among the images stored in the mobile terminal. The processor learns a facial feature of the user using the images stored in the mobile terminal as learning data and analyzes the face image obtained through the camera based on the learned facial feature of the user to perform the face authentication of the user.
Abstract:
An apparatus and method for determining driver distraction based on a jerk and a vehicle system are provided. The apparatus includes: a jerk calculating processor to calculate a lateral jerk of a vehicle based on driving information collected when the vehicle is traveling, an exception event detecting processor to detect an exception event defining a situation where the lateral jerk occurs during normal driving based on the collected driving information, and a determining processor to detect oversteering of the vehicle by comparing the calculated lateral jerk with a reference value and determine a driver distraction based on the detected oversteering and exception event.
Abstract:
A driver customizable blind spot display method and apparatus are provided. The method of displaying blind spots of a vehicle via a screen mounted within a vehicle includes receiving information regarding positions of the driver's eyes from a driver state monitoring system and receiving current mirror setting information on a per in-vehicle mirror basis from a mirror drive unit. Blind spots and viewable spots are then calculated using the information regarding positions of the driver's eyes and the current mirror setting information. Further, a current blind spot coverage screen is output that displays the calculated blind spots and viewable spots.
Abstract:
A drowsy driving management device includes: a processor configured to determine whether slow eye movement of a user occurs and whether there is no change in steering torque and to determine that the user drives while drowsy when the slow eye movement of the user occurs and when there is no change in the steering torque for a predetermined period of time; and a storage that stores information indicating whether the slow eye movement occurs and a result of determining whether there is no change in the steering torque.
Abstract:
The present disclosure relates to a driver distraction warning control apparatus and a driver distraction warning control method. The driver distraction warning control apparatus includes a sensor device that detects gaze of a driver, a setting device configured to divide a virtual area on front of the driver into a plurality of gaze areas, and sets a threshold for each of the gaze areas, a determining device that determines a viewing area corresponding to the driver's gaze direction from among the gaze areas, and a controller that performs driver distraction warning control based on the threshold set for the determined viewing area.
Abstract:
A system for determining a state of a driver includes a face tracking device configured to detect coordinates and a direction vector of a face at intervals of a sampling time from a face image of the driver, an event detecting device configured to detect valid behavior of a vehicle as an event, and a determination device configured to determine an impaired state of the driver based on a reflex response time of the driver when the event is detected by the event detecting device.
Abstract:
An apparatus and a method for controlling autonomous driving of a vehicle, and a vehicle system are provided. The apparatus monitors a stress state of a driver using biometric information of the driver and calculates an allowable jerk of the driver based on a jerk at a time point at which the stress state of the driver exceeds a preset reference value. A predicted jerk is calculated based on location and movement information of the vehicle and a preceding vehicle measured while the vehicle travels, and lane information. Additionally, a driving state of the vehicle is determined when the predicted jerk exceeds an allowable jerk of the driver and an alarm is output based on the driving state of the vehicle.
Abstract:
A driver customizable blind spot display method and apparatus are provided. The method of displaying blind spots of a vehicle via a screen mounted within a vehicle includes receiving information regarding positions of the driver's eyes from a driver state monitoring system and receiving current mirror setting information on a per in-vehicle mirror basis from a mirror drive unit. Blind spots and viewable spots are then calculated using the information regarding positions of the driver's eyes and the current mirror setting information. Particularly, the position of the driver's eyes is used to determine optimum mirror setting information. A mirror plane angle is then adjusted based on the optimum mirror setting information. A current blind spot coverage screen is then output to display the calculated blind spots and viewable spots.
Abstract:
An apparatus for controlling the driving assistance of a vehicle, a system including the same and a method for the same are provided. The apparatus for controlling the driving assistance of the vehicle includes a processor to adjust a driving assistance controlling setting value, based on at least one of whether a user looks ahead, whether the user performs a driving manipulation, and a driving condition during driving assistance of the vehicle, and a storage to store the driving assistance controlling setting value.