Abstract:
An electrical device includes an electromagnetic component configured to generate a magnetic flux. The electromagnetic component includes a soft magnetically-conductive material configured to pass magnetic flux therethrough along a flux path. The soft magnetically-conductive material includes at least one grain oriented portion having metal grains that are oriented parallel with respect to the magnetic flux.
Abstract:
A method for fabricating printed electronics includes printing a trace of an electrical component on a first substrate to form a first layer. The method further includes printing a trace of an electrical component on at least one additional substrate to form at least one additional layer. The first layer is stacked with the at least one additional layer to create an assembled electrical device. At least one of the layers is modified after printing.
Abstract:
A method of tailoring an amount of graphene in an electrically conductive structure, includes arranging a substrate material in a plurality of strands and arranging at least one graphene layer coated circumferentially on one or more of the strands of the plurality of strands, the graphene layer being a single atom-thick layer of carbon atoms arranged in a hexagonal pattern, the substrate material and the at least one graphene layer having an axial direction. A first cross-section taken along the axial direction of the substrate and the at least one graphene layer includes a plurality of layers of the substrate material and at least one internal layer of the graphene alternatively disposed between the plurality of layers of the substrate material.
Abstract:
A winding configuration for an electric machine includes a stator core with a plurality of winding slots, a plurality of conductor strands distributed in a winding slot of the plurality of winding slots, and an insulation matrix that surrounds each of the plurality of the conductor strands. The winding slot includes a slot cavity with a cross-section area and the plurality of distributed conductor strands are configured to maximize slot fill factor.
Abstract:
In one embodiment, a stator includes a stator core and a winding assembly. The stator core has an axis and a slot extending a radial depth from a slot opening. The winding assembly is disposed in the slot, and includes a plurality of winding strands with cross-sectional shapes that vary as a function of radial location within the slot.In another embodiment, a method of forming a stator winding assembly for a stator slot includes additively manufacturing a plurality of winding strands and an insulating gap matrix that separates the winding strands. The winding strands have cross-sectional shapes through a radial-circumferential plane that varies as a function of radial position within the slot.
Abstract:
A method of forming a bulk product includes the step of coating a particulate conductive phase material with a binder phase, and forming the coated conductive phase material into at least one of sheet stock, tape formed into a bulk material. A method of forming a bulk product includes the step of coating a particulate conductive phase material with a binder phase and forming the coated conductive phase material into a bulk material. The conductive phase material includes at least one of two dimensional materials, single layer materials, carbon nanotubes, boron nitride nanotubes, aluminum nitride and molybdenum disulphide (MoS2). A component is also disclosed.
Abstract:
A method of tailoring an amount of graphene in an electrically conductive structure, includes arranging a substrate material in a plurality of strands and arranging at least one graphene layer coated circumferentially on one or more of the strands of the plurality of strands, the graphene layer being a single atom-thick layer of carbon atoms arranged in a hexagonal pattern, the substrate material and the at least one graphene layer having an axial direction. A first cross-section taken along the axial direction of the substrate and the at least one graphene layer includes a plurality of layers of the substrate material and at least one internal layer of the graphene alternatively disposed between the plurality of layers of the substrate material.
Abstract:
A method for fabricating printed electronics includes printing a trace of an electrical component on a first substrate to form a first layer. The method further includes printing a trace of an electrical component on at least one additional substrate to form at least one additional layer. The first layer is stacked with the at least one additional layer to create an assembled electrical device. At least one of the layers is modified after printing.
Abstract:
A method of forming a bulk product includes the step of coating a particulate conductive phase material with a binder phase, and forming the coated conductive phase material into at least one of sheet stock, tape formed into a bulk material. A method of forming a bulk product includes the step of coating a particulate conductive phase material with a binder phase and forming the coated conductive phase material into a bulk material. The conductive phase material includes at least one of two dimensional materials, single layer materials, carbon nanotubes, boron nitride nanotubes, aluminum nitride and molybdenum disulphide (MoS2). A component is also disclosed.
Abstract:
A method of forming a bulk product includes the step of coating a particulate conductive phase material with a binder phase, and forming the coated conductive phase material into at least one of sheet stock, tape formed into a bulk material. A method of forming a bulk product includes the step of coating a particulate conductive phase material with a binder phase and forming the coated conductive phase material into a bulk material. The conductive phase material includes at least one of two dimensional materials, single layer materials, carbon nanotubes, boron nitride nanotubes, aluminum nitride and molybdenum disulphide (MoS2). A component is also disclosed.