Abstract:
Example embodiments of methods, apparatus, and systems for measuring polarimetric parameters using spectroscopy are disclosed herein. Particular embodiments concern circular dichroism (CD) spectrometers that use a vertically aligned beam. In such embodiments, the solution being analyzed may have a top surface that forms a convex or concave meniscus, creating a surface through which the measuring beam passes that may refract the beam in undesirable ways. Accordingly, particular embodiments of the disclosed technology include one or more meniscus-compensating (meniscus-effect-reducing) components or subsystems. These components and/or subsystems can be used alone or in combination with one another to reduce the undesirable refractive effects caused by the meniscus at the solution's surface, thereby improving the resulting quality of the spectroscopy measurement and potentially improving the speed with which CD spectroscopy can be performed.
Abstract:
This invention is directed to methods of unambiguously measuring the absolute retardance, δA of an optical sample. A method for measuring absolute retardance of an optical sample includes directing light comprising a plurality of wavelengths through a polarization state generator source, the optical sample, and a polarization state analyzer, detecting, at an imaging device, retardance measurement light emanating from the optical sample after also passing through the polarization state analyzer at the plurality of wavelengths, determining a measurement retardance associated with the detected retardance measurement light at each of the wavelengths, and determining an absolute retardance associated with the optical sample based on the measurement retardances determined at each of the wavelengths.
Abstract:
This disclosure is generally directed to systems for imaging polarization properties of optical-material samples. As one example, there is provided a system for precise, simultaneous imaging of both the in-plane and out-of-plane birefringence properties of sample material over a wide range of incidence angles. An example spatially resolved imaging approach described herein is amenable to determination of a wide range of polarimetric properties, in addition to the in-plane and out-of-plane birefringence measure discussed as a preferred embodiment.
Abstract:
A birefringence measurement system includes a lens mounted for selective movement into and out of use in the optical setup so that a wide range of sample types can be handled by the system without reconfiguring the primary components of the optical setup of the system (moving the detector, changing the light source power, etc.) in a manner that would sacrifice the cost effectiveness, efficiency, mechanical reliability and repeatability of measurements for such systems.
Abstract:
Example embodiments of methods, apparatus, and systems for measuring polarimetric parameters using spectroscopy are disclosed herein. Particular embodiments concern circular dichroism (CD) spectrometers that use a vertically aligned beam. In such embodiments, the solution being analyzed may have a top surface that forms a convex or concave meniscus, creating a surface through which the measuring beam passes that may refract the beam in undesirable ways. Accordingly, particular embodiments of the disclosed technology include one or more meniscus-compensating (meniscus-effect-reducing) components or subsystems. These components and/or subsystems can be used alone or in combination with one another to reduce the undesirable refractive effects caused by the meniscus at the solution's surface, thereby improving the resulting quality of the spectroscopy measurement and potentially improving the speed with which CD spectroscopy can be performed.
Abstract:
This disclosure is generally directed to systems for imaging polarization properties of optical-material samples. As one example, there is provided a system for precise, simultaneous imaging of both the in-plane and out-of-plane birefringence properties of sample material over a wide range of incidence angles. An example spatially resolved imaging approach described herein is amenable to determination of a wide range of polarimetric properties, in addition to the in-plane and out-of-plane birefringence measure discussed as a preferred embodiment.
Abstract:
This invention is directed to methods of unambiguously measuring the absolute retardance, δA of an optical sample. A method for measuring absolute retardance of an optical sample includes directing light comprising a plurality of wavelengths through a polarization state generator source, the optical sample, and a polarization state analyzer, detecting, at an imaging device, retardance measurement light emanating from the optical sample after also passing through the polarization state analyzer at the plurality of wavelengths, determining a measurement retardance associated with the detected retardance measurement light at each of the wavelengths, and determining an absolute retardance associated with the optical sample based on the measurement retardances determined at each of the wavelengths.
Abstract:
An apparatus includes a photoelastic modulator (PEM) optical element including a first driving axis and a second driving axis arranged at a selected angle with respect to each other and perpendicular to an optical axis, wherein the first driving axis and the second driving axis extend respective predetermined non-equal lengths that correspond to respective predetermined non-equal natural first and second PEM frequencies f1 and f2. Methods of manufacture and operation are also disclosed.
Abstract:
An apparatus includes a photoelastic modulator (PEM) optical element including a first driving axis and a second driving axis arranged at a selected angle with respect to each other and perpendicular to an optical axis, wherein the first driving axis and the second driving axis extend respective predetermined non-equal lengths that correspond to respective predetermined non-equal natural first and second PEM frequencies f1 and f2. Methods of manufacture and operation are also disclosed.
Abstract:
This disclosure is generally directed to systems for imaging polarization properties of optical-material samples. As one aspect, there is provided a system for precise, simultaneous imaging of both the in-plane and out-of-plane birefringence properties of sample material over a wide range of incidence angles. The spatially resolved imaging approach described here is amenable to determination of a wide range of polarimetric properties, in addition to the in-plane and out-of-plane birefringence measure discussed as a preferred embodiment.